Genetic relationships and close inbreeding - solutions

1. a)
B
A

$$F_A = \frac{1}{2}a_{BD} = \frac{1}{2} \times \left((\frac{1}{2})^{1+0} (1+F_D) \right) = \frac{1}{2} \times \left(\frac{1}{2} \times (1+0) \right) = \frac{1}{4} = 0.25$$

b) $a_{AD} = \left((\frac{1}{2})^{2+0} + (\frac{1}{2})^{1+0} \right) (1+F_D) = \left((\frac{1}{2})^2 + (\frac{1}{2})^1 \right) (1+0) = \frac{1}{4} + \frac{1}{2} = 0.75$

b)
$$F_{\text{progeny}} = \frac{1}{2}a_{DS} = \frac{1}{2} \times \frac{1}{8} = \frac{1}{16} = 0.625 = 6.25\%$$

= The probability that two alleles in a locus of an individual Z are identical by 3. a) F_Z descent (IBD)

= The probability that a randomly sampled gene from individual X is identical by b) f_{xy} descent with one randomly sampled gene of the same locus from individual Y

= The probability that a randomly sampled gene from individual X is identical by c) a_{xy} descent with any of the genes in the same locus from individual Y

d)
$$X = f_{xy} = \frac{1}{2} a_{xy}$$

4. D is inbred:
$$F_D = \frac{1}{2} a_{BA} = \frac{1}{4}$$

Three paths must be summarized:

Three paths must be summarized:

$$a_{EF} = \left(\frac{1}{2}\right)^{3+2} (1+0) + \left(\frac{1}{2}\right)^{2+2} (1+0) + \left(\frac{1}{2}\right)^{1+1} (1+\frac{1}{4})$$

$$EDE(A)CF ED(A)CF ED(A)CF ED(A)F = \left(\frac{1}{2}\right)^{5} + \left(\frac{1}{2}\right)^{4} + \left(\frac{1}{2}\right)^{2} \times \frac{5}{2} = \frac{1}{32} + \frac{1}{16} + \frac{5}{16} = \frac{13}{32}$$

$$E = \left(\frac{1}{2}\right)^{5} + \left(\frac{1}{2}\right)^{4} + \left(\frac{1}{2}\right)^{2} \times \frac{5}{2} = \frac{1}{32} + \frac{1}{16} + \frac{5}{16} = \frac{13}{32}$$

$$F_X = \frac{1}{2} a_{EF} = \frac{1}{2} \times \frac{13}{32} = \frac{13}{64} \approx 0.20$$

The inbreeding coefficient of the progeny (F_x) equals half the additive relationship (a_{AB}) between parents A and B

$$a_{AB} = (\frac{1}{2})^{m+n}(1+F_{2069M})$$

where m and n are the number of arrows between A, B and the common ancestor (2069 M)

Thus

5. a)

$$a_{AB} = (\frac{1}{2})^{2+2}(1+0) = \frac{1}{16} = 0.0625 \text{ or } 6.25\%$$

The inbreeding coefficient for X is

$$F_x = \frac{1}{2} \times a_{AB} = \frac{1}{2} \times \frac{1}{16} \times \frac{1}{32} = 0.03125 \text{ or } 3.125\%$$

Here we assumed that the ancestor (2069 M) is not inbred. If e.g. the inbreeding coefficient for 2069 M is 5%, then

$$a_{AB} = (\frac{1}{2})^{2+2}(1+0.05) = 0.0625 \times 1.05 = 0.066$$
 or 6.6% and $F_x = 3.3\%$

b)

The relationship between the parents of Y is

$$a_{XF} = \left(\left(\frac{1}{2}\right)^{3+2} + \left(\frac{1}{2}\right)^{3+2} \right) \times \left(1 + F_{2069M}\right)$$

i.e. both paths X, A, C, 2069 M, E, F and X, B, D, 2069 M, E, F are summarized

If F_{2069M} is 0 (2069 M not inbred)

$$a_{XF} = \frac{1}{32} + \frac{1}{32} = \frac{1}{16} = 0.0625 = 6.25\%$$

The inbreeding coefficient for Y is then

$$F_Y = \frac{1}{2} \times \frac{1}{16} = \frac{1}{32} = 0.03125 = 3.125\%$$

The heifer X is a grand-daughter to 1138 S and furthermore related to him through 2069 M. The relationship between them is

$$a_{X-1138S} = (\frac{1}{2})^{2+0} (1 + F_{1138S}) + (\frac{1}{2})^{3+1} (1 + F_{2069M}).$$

If 1138 S and 2069 M are not inbred, i.e. F_{1138S} and $F_{2069 M} = 0$ then

$$a_{X-1138S} = (\frac{1}{2})^{2+0} + (\frac{1}{2})^{3+1} = \frac{1}{4} + \frac{1}{16} =$$

= $\frac{5}{16} = 0.3125 = 31.25\%.$

The inbreeding coefficient for an offspring, if the heifer X is inseminated by 1138 S would be: $F_Y = \frac{1}{2}a_{X-1138S} = \frac{1}{2} \times \frac{5}{16} = \frac{5}{32} = 0.15625 = 15.6\%.$

d) 15% is definitely too high to be recommended