Genetic relationships and close inbreeding - solutions

1. a)

$$
\mathrm{F}_{\mathrm{A}}=\frac{1}{2} a_{B D}=\frac{1}{2} \times\left(\left(\frac{1}{2}\right)^{1+0}\left(1+F_{D}\right)\right)=\frac{1}{2} \times\left(\frac{1}{2} \times(1+0)\right)=\frac{1}{4}=0.25
$$

b) $\mathrm{a}_{\mathrm{AD}}=\left(\left(\frac{1}{2}\right)^{2+0}+\left(\frac{1}{2}\right)^{1+0}\right)\left(1+F_{D}\right)=\left(\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{1}\right)(1+0)=\frac{1}{4}+\frac{1}{2}=0.75$
2. a)

b) $\quad \mathrm{F}_{\text {progeny }}=\frac{1}{2} a_{D S}=\frac{1}{2} \times \frac{1}{8}=\frac{1}{16}=0.625=6.25 \%$
3. a) $\mathrm{F}_{\mathrm{Z}}=$ The probability that two alleles in a locus of an individual Z are identical by descent (IBD)

b) $f_{x y}=$ The probability that a randomly sampled gene from individual X is identical by descent with one randomly sampled gene of the same locus from individual Y

c) $\mathrm{a}_{\mathrm{xy}}=$ The probability that a randomly sampled gene from individual X is identical by descent with any of the genes in the same locus from individual Y

d)

$$
\mathrm{F}_{\mathrm{Z}}=\mathrm{f}_{\mathrm{xy}}=\frac{1}{2} \mathrm{a}_{\mathrm{xy}}
$$

4. $\quad \mathrm{D}$ is inbred: $\quad \mathrm{F}_{\mathrm{D}}=\frac{1}{2} \mathrm{a}_{\mathrm{BA}}=\frac{1}{4}$

Three paths must be summarized:

$$
\begin{aligned}
\mathrm{a}_{\mathrm{EF}}= & \left(\frac{1}{2}\right)^{3+2}(1+0)+\left(\frac{1}{2}\right)^{2+2}(1+0)+\left(\frac{1}{2}\right)^{1+1}\left(1+\frac{1}{4}\right) \\
& \mathrm{EDB} \mathrm{ACF} \\
= & \left(\frac{1}{2}\right)^{5}+\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{2} \times \frac{5}{2}=\frac{1}{32}+\frac{1}{16}+\frac{5}{16}=\frac{13}{32} \\
\mathrm{~F}_{\mathrm{X}}= & \frac{1}{2} \mathrm{a}_{\mathrm{EF}}=\frac{1}{2} \times \frac{13}{32}=\frac{13}{64} \approx 0.20
\end{aligned}
$$

5.

a)

The inbreeding coefficient of the progeny $\left(\mathrm{F}_{\mathrm{x}}\right)$ equals half the additive relationship $\left(\mathrm{a}_{\mathrm{AB}}\right)$ between parents A and B

$$
a_{A B}=\left(\frac{1}{2}\right)^{m+n}\left(1+F_{2069 M}\right)
$$

where m and n are the number of arrows between A, B and the common ancestor (2069 M)

Thus

$$
a_{A B}=\left(\frac{1}{2}\right)^{2+2}(1+0)=\frac{1}{16}=0.0625 \text { or } 6.25 \%
$$

The inbreeding coefficient for X is

$$
F_{X}=\frac{1}{2} \times a_{A B}=\frac{1}{2} \times \frac{1}{16} \times \frac{1}{32}=0.03125 \text { or } 3.125 \%
$$

Here we assumed that the ancestor (2069 M) is not inbred.
If e.g. the inbreeding coefficient for 2069 M is 5%, then

$$
\begin{aligned}
& a_{A B}=\left(\frac{1}{2}\right)^{2+2}(1+0.05)=0.0625 \times 1.05=0.066 \text { or } 6.6 \% \text { and } \\
& F_{X}=3.3 \%
\end{aligned}
$$

b)

The relationship between the parents of Y is

$$
a_{X F}=\left(\left(\frac{1}{2}\right)^{3+2}+\left(\frac{1}{2}\right)^{3+2}\right) \times\left(1+F_{2069 M}\right)
$$

i.e. both paths X, A, C, 2069 M , E, F and X, B, D, 2069 M , E,F are summarized

If $\mathrm{F}_{2069 \mathrm{M}}$ is 0 (2069 M not inbred)

$$
a_{X F}=\frac{1}{32}+\frac{1}{32}=\frac{1}{16}=0.0625=6.25 \%
$$

The inbreeding coefficient for Y is then

$$
F_{Y}=\frac{1}{2} \times \frac{1}{16}=\frac{1}{32}=0.03125=3.125 \%
$$

c)

The heifer X is a grand-daughter to 1138 S and furthermore related to him through 2069 M . The relationship between them is

$$
\begin{aligned}
a_{X-1138 S}= & \left(\frac{1}{2}\right)^{2+0}\left(1+F_{1138 S}\right)+ \\
& +\left(\frac{1}{2}\right)^{3+1}\left(1+F_{2069 M}\right)
\end{aligned}
$$

If 1138 S and 2069 M are not inbred, i.e.
$\mathrm{F}_{1138 \mathrm{~s}}$ and $\mathrm{F}_{2069 \mathrm{M}}=0$ then

$$
\begin{aligned}
a_{X-1138 S} & =\left(\frac{1}{2}\right)^{2+0}+\left(\frac{1}{2}\right)^{3+1}=\frac{1}{4}+\frac{1}{16}= \\
& =\frac{5}{16}=0.3125=31.25 \%
\end{aligned}
$$

The inbreeding coefficient for an offspring, if the heifer X is inseminated by 1138 S would be:

$$
F_{Y}=\frac{1}{2} a_{X-1138 S}=\frac{1}{2} \times \frac{5}{16}=\frac{5}{32}=0.15625=15.6 \%
$$

d) 15% is definitely too high to be recommended

