## Selection and genetic gain - solutions to exercises

1. a) Construct a curve (according to the table):

| $\mathbf{x}_{\mathbf{0}}$ | $\mathbf{z}$ |
| :---: | :--- |
| 2.88 | 0.0063 |
| 0.995 | 0.243 |
| 0.00 | 0.399 |
| -2.054 | 0.048 |


b) $x_{0}=\frac{240-180}{40}=1.5 \sigma-$ units

$$
\left.\left.\begin{array}{c}
\left.\left.\begin{array}{l}
\frac{x_{0}}{1.555} \\
\text { Interpolation in table: } \\
1.500 \\
1.476
\end{array}\right\} 0.024\right\} 0.079 \\
\frac{v}{v} \\
7
\end{array}\right\} \Delta v\right\}-1
$$

$\mathrm{x}_{0}=1.5 \rightarrow \mathrm{v}=6.7 \%$
$6.7 \%$ of the hens produce more than 240 eggs.
c) $x_{0}=\frac{140-180}{40}=-1 \sigma-$ unit

Interpolation in the table gives $\mathrm{x}_{0}=-1 \longrightarrow \mathrm{v}=84.1 \%$ of the hens are kept for breeding purposes
$\mathrm{x}_{0}=-1$ gives $\mathrm{z}=0.242$

Selection intensity: $=\frac{0.242}{0.841}=0.29 \quad$ (see also table)

Selection difference: $\quad \mathrm{S}=\mathrm{I} \times \sigma_{\mathrm{x}}=0.29 \times 40=11.6$ eggs

The mean for the selected animals exceeds the population mean with 11.6 eggs ( $\mu_{\mathrm{s}}=11.6+$ $180=191.6$ eggs) .
2. a) $v=\frac{2000}{10000}=20 \% \rightarrow i=1.4$

$\mathrm{S}=\mathrm{i} \times \sigma_{\mathrm{x}}=1.4 \times 1000=1400$
$\mu_{\mathrm{s}}=\mu+\mathrm{S}$
$5500=\mu+1400 \quad \mu=4100$
Average milk yield for the whole population $=4100 \mathrm{~kg}$
b) $40 \% \rightarrow I=0.966$
$\mathrm{S}=\mathrm{i} \times \sigma_{\mathrm{x}}=0.966 \times 1000=966$
$\mu_{\mathrm{s}}=4100+966=5066 \mathrm{~kg}$
Average yield for the 4000 best cows $=5066 \mathrm{~kg}$
c) $\mathrm{v}=40 \%$
 $\mathrm{x}_{0}=0.253 \sigma$-units
The limit is at $4100+(0.253 \times 1000)=4353 \mathrm{~kg}$
3. Population size: $100 \times 1.8 \times 0.5=90$ ewe lambs

Number of selected: $0.20 \times 100=20$ ewe lambs
Percentage selected: $\frac{20}{90} \times 100=22.22 \%$
Interpolation in the table gives $\mathrm{I}=1.340$
Correction for populations with less than 500 individuals.
$i^{\prime}=i-\frac{0.25}{\text { number of selected }}=1.340-\frac{0.25}{20}=1.328$
$h^{2}=\frac{\sigma_{A}^{2}}{\sigma_{P}^{2}} ; \quad \sigma_{P}=\sqrt{\frac{\sigma_{A}^{2}}{h^{2}}}=\sqrt{\frac{4.8}{0.3}}=\sqrt{16}=4$

Selection differential $\mathrm{S}=\mathrm{i}^{\prime} \times \sigma_{\mathrm{P}}=1.328 \times 4=5.312$
4. $\mathrm{v}=0.60$ gives $\mathrm{I}=0.644$
$\sigma_{P}=500 \quad \mu=5500$
$\mathrm{h}_{2}=0.25$
$\mathrm{L}=4.5$ years
a) $\mathrm{S}=\mathrm{i} \times \sigma_{\mathrm{P}}=0.644 \times 500=322 \mathrm{~kg}$

$$
\mu_{\mathrm{s}}=\mu+\mathrm{S}=5500+322=5822 \mathrm{~kg}
$$

b) $\Delta T_{\text {year }}=\frac{r_{T I} \times i \times \sigma_{T}}{L}=\frac{r_{T I} \times i \times \sqrt{h^{2}} \times \sigma_{P}}{L}=\frac{r_{T I} \times \sqrt{h^{2}} \times S}{L}$ For performance testing with one observation: $\quad r_{T I}=\sqrt{h^{2}}$

$$
\Delta T_{\text {year }}=\frac{h^{2} \times S}{L}=\frac{0.25 \times 322}{4.5}=17.9 \mathrm{~kg} / \text { year }
$$

5. a) $\mathrm{v}=50 \%$ gives $\mathrm{i}=0.798$

$$
\begin{aligned}
& h^{2}=\frac{\sigma_{A}^{2}}{\sigma_{P}^{2}}=\frac{\sigma^{2}}{12^{2}}=0.25 \\
& \Delta \mathrm{~T}=\mathrm{h}^{2} \times \mathrm{i} \times \sigma_{\mathrm{P}}=0.25 \times 0.798 \times 12=2.394 \text { units/generation }
\end{aligned}
$$

b) $\Delta T_{\text {year }}=\frac{1 \times 105}{100}=\frac{0.25 \times i \times 12}{4}$ units $/$ year

$$
i=\frac{4 \times 105 \times 1}{100 \times 0.25 \times 12}=1.4 \quad \text { which corresponds to } 20 \% \text { selected }
$$

6. a) Performance testing:
$\mathrm{b}=\mathrm{h}^{2}=0.4 \quad r_{T I}=\sqrt{0.4}=0.63$

2000 animals can be tested - 100 are selected
$v=\frac{100}{2000}=5 \% \quad \mathrm{i}=2.063$
b) Progeny testing:
$\frac{1+(10-1) 0.25 \times 0.4}{10} \times b=0.5 \times 0.4$
$b=\frac{10 \times 0.5 \times 0.4}{1+9 \times 0.25 \times 0.4}=1.0526$
$r_{T I}=\sqrt{0.5 \times 1.0526}=0.73$

2000 animals -10 progenies/sire $\longrightarrow 200$ animals can be tested
$v=\frac{100}{200}=50 \% \quad \mathrm{i}=0.798$
c) $h=\sqrt{0.4}=\frac{\sigma_{T}}{\sigma_{P}}=\frac{\sigma_{T}}{10} ; \quad \sigma_{T}=10 \times \sqrt{0.4}=6.3 \mathrm{~kg}$
$\Delta \mathrm{T}=\mathrm{r}_{\mathrm{TI}} \times \mathrm{i} \times \sigma_{\mathrm{T}}$ per generation

Performance testing: $\quad \Delta \mathrm{T}=0.63 \times 2.063 \times 6.3=8.2 \mathrm{~kg}$
Progeny testing: $\quad \Delta \mathrm{T}=0.73 \times 0.798 \times 6.3=3.7 \mathrm{~kg}$
c) Progeny testing will increase the generation interval (L). This means that performance testing will be comparatively even more favourable when the annual genetic change is considered. It can however be discussed if $\mathrm{r}_{\mathrm{TI}}=0.63$ (which we get here for performance testing) is enough.
7. a) $\mathrm{I}_{1}=\mathrm{b}_{1} \mathrm{X}_{1}$

$$
\sigma_{T_{2}}=\sqrt{h_{2}^{2} \times \sigma_{P_{2}}^{2}}=0.28
$$

$$
\mathrm{T}=\mathrm{A}_{2}
$$

$$
\Delta T_{2} \mid I_{1}=r_{g} \sqrt{h_{1}^{2}} \times i \times \sigma_{A_{2}}=-0.85 \sqrt{0.35} \times 1.4 \times 0.28=
$$

$$
=-0.197 \simeq-0.2 \mathrm{MJ} / \mathrm{kg} \text { weight gain }
$$

b) $\frac{\Delta T_{2} \mid I_{1}}{\Delta T_{2} \mid I_{2}}=\sqrt{\left(r_{g}\right)^{2} \times \frac{h_{1}^{2}}{h_{2}^{2}}=\sqrt{(-0.85)^{2} \times \frac{0.35}{0.40}}}=0.795 \rightarrow 80 \%$
8. $\sigma_{A}^{2}$ is derived from the relation $h^{2}=\frac{\sigma_{A}^{2}}{\sigma_{P}^{2}}$

$$
\begin{aligned}
& \sigma_{A}=\sqrt{h^{2} \times \sigma_{P}^{2}} \\
& \sigma_{A_{1}}=\sqrt{0.25 \times 738^{2}}=369 \\
& \sigma_{A_{2}}=\sqrt{0.25 \times 31.0^{2}}=15.50 \\
& \sigma_{A_{3}}=\sqrt{0.25 \times 24.5^{2}}=12.25
\end{aligned}
$$

Selection of the $50 \%$ best cows gives selection intensity $\mathrm{i}=0.798$ (see Table).

The direct selection effect on trait 1 is for individual selection on $I_{1}$ :

$$
\Delta T_{1} \mid I_{1}=\sqrt{h_{1}^{2}} \times i \times \sigma_{A_{1}}
$$

The correlated selection effect for trait 2 is then:

$$
\Delta T_{2} \mid I_{1}=r_{g_{12}} \times \sqrt{h_{1}^{2}} \times i \times \sigma_{A_{2}}
$$

a) Direct selection for milk yield $\left(\mathrm{X}_{1}\right)$ gives

$$
\Delta T_{1} \mid I_{1}=0.5 \times 0.798 \times 369=147.23
$$

Selection for only milk yield gives a correlated effect in fat yield:

$$
\Delta T_{2} \mid I_{1}=0.95 \times 0.5 \times 0.798 \times 15.50=5.88
$$

Correlated effect in protein yield:

$$
\Delta T_{3} \mid I_{1}=0.90 \times 0.5 \times 0.798 \times 12.25=4.40
$$

b) Direct selection for fat yield $\left(\mathrm{X}_{2}\right)$ gives:

$$
\Delta T_{2} \mid I_{2}=0.5 \times 0.798 \times 15.50=6.18
$$

Correlated effect in milk yield:

$$
\Delta T_{1} \mid I_{2}=0.95 \times 0.5 \times 0.789 \times 369=139.87
$$

Correlated effect in protein yield:

$$
\Delta T_{3} \mid I_{2}=0.82 \times 0.5 \times 0.789 \times 12.25=4.01
$$

c) Direct selection for protein yield gives:
$\Delta T_{3} \mid I_{3}=0.5 \times 0.789 \times 12.25=4.89$
Correlated effect in milk yield:
$\Delta T_{1} \mid I_{3}=0.90 \times 0.5 \times 0.789 \times 369=132.51$
Correlated effect in fat yield:

$$
\Delta T_{2} \mid I_{3}=0.82 \times 0.5 \times 0.789 \times 15.50=5.07
$$

9. The selection intensity (i) increases but the accuracy ( $\mathrm{r}_{\mathrm{TI}}$ ) decreases, unless the heritability is very high. The generation interval ( L ) decreases. Genetic gain increases if the gain in $i$ and $L$ is greater than the loss of accuracy.
10. $\mathrm{v}_{\mathrm{S}}=1 \%$
$v_{D}=50 \%$
$\Delta T=\frac{R_{S}+R_{D}}{2}$
$R_{S}=r_{T I_{S}} \times i_{S} \times \sigma_{T}=0.96 \times 2.665 \times 1000=2.558$ pounds
$R_{D}=r_{T I} \times i_{S} \times \sigma_{T}=0.69 \times 0.798 \times 1000=551$ pounds
$\Delta T=\frac{2.558+551}{2}=1555$ pounds
11. 

|  | Ewes D | $\begin{gathered} \text { Rams } \\ \mathrm{S} \end{gathered}$ |
| :---: | :---: | :---: |
| \% selected | 20 | 2 |
| i | 1.400 | 2.421 |
| $\sigma_{\mathrm{p}}, \mathrm{kg}$ | 4 | 4 |
| $\mathrm{i} \cdot \sigma_{\mathrm{p}}=\mathrm{S}, \mathrm{kg}$ | 5.6 | 9.684 |
| $\mathrm{h}^{2} \cdot \mathrm{~S}=\mathrm{R}, \mathrm{kg}$ | 1.68 | 2.905 |
| L, year | 4 | 1.5 |

$$
\Delta T_{y}=\frac{R_{D}+R_{S}}{L_{D}+L_{S}}=\frac{1.68+2.905}{4+1.5}=0.834 \mathrm{~kg} / \text { year }
$$

12. $\sigma_{T}=\sigma_{A}=\sqrt{h^{2}} \times \sigma_{P}$

| Path in selection | $\mathbf{r}_{\mathbf{T I}}$ | $\mathbf{i}$ | $\boldsymbol{\sigma}_{\mathbf{T}}$ | $\mathbf{R}=\mathbf{r}_{\mathbf{T I}} \cdot \mathbf{i} \cdot \sigma_{\mathbf{T}}$ | $\mathbf{L}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| F-S | 0.877 | 2.063 | 400 | 723.7 | 8 |
| F-D | 0.877 | 1.400 | 400 | 491.1 | 6 |
| M-S | 0.598 | 1.755 | 400 | 419.8 | 7 |
| M-D | 0.500 | 0.350 | 400 | 70.0 | 7 |
| Total |  |  |  | 1704.6 | 28 |

$\Delta_{T_{y}}=\frac{\Sigma R}{\Sigma L}=\frac{1704.3}{28}=60.88 \mathrm{~kg} /$ year
$\Delta^{T_{y}}=\frac{60.88}{5000} \times 100=1.2 \%$ per year

