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A major principle of animal breeding is to select those animals to become parents 
that will improve the genetic level in the next generation the most. For this 
purpose we need to identify animals with the best genes. In most situations this 
amounts to finding animals with the best additive genetic effects (or breeding 
values). The breeding value is not a measure of how good an animal is in itself, 
but rather of the effect its genes will have in the population. 
 
For quantitative traits we are unable to observe the genotype, we can only 
measure the phenotypic value, which is influenced both by genotype and 
environment. Therefore, we need a way to infer the breeding value from the 
phenotypic value in such a way that we maximize the probability of choosing the 
correct animals to become parents. This is the objective of the genetic evaluation. 
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A general approach: regression of breeding value on pheno-
typic value, bA/P

We will now try to derive a general approach for predicting breeding values for 
any type of situation. Even though the procedure is general we will use a simple 
example to describe it. 
 
Assume a simple genetic model:        

 P = A + E [1] 

where P is the phenotypic value of an individual as a deviation from the mean, A 
is the (true) breeding value, and E is the environmental deviation. We cannot ex-
actly know the values of A and E, only their sum. The phenotypic value can be 
thought of as a black box, and we need a light to see what’s in it. We need a way 
to calculate the breeding value A, given that we know the phenotypic value. 
 
Let’s have a look at some data to see if we can come up with a solution to the 
problem. In Figure 1 the breeding values (y-axis) of 200 individuals are plotted 
against their phenotypic values expressed as deviations from the mean (x-axis). 
(This cannot be done using real data, so we have simulated the individuals in the 
computer according to eq. [1].)  
 
We can observe the following: 

 The good news is that in general, an increased phenotypic value is associated 
with an increased breeding value. The cluster of points move from the lower 
left towards the upper right of the graph.  

 The not-so-good news is that if we choose a certain phenotypic deviation (say 
+2, as shown by the vertical line), we can see that all individuals with (ap-
proximately) that value do not have the same breeding value. 

 For this group, we can also see that their breeding values lie between ap-
proximately 0.2 and 1.0 with an average of about 0.6, i.e. the average breed-
ing value is smaller than the phenotypic deviations.  

Figure 1. Plot of 
breeding values and 
phenotypic devia-
tions for 200 indi-
viduals. -3
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So, in conclusion, we are fairly safe in assuming that increased phenotypic value 
is associated with increased breeding value, but the increase in breeding value 
seems to be smaller than the increase in phenotypic value. 
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One way of quantifying the relationship between breeding values and phenotypic 
deviations in Figure 1 is by a linear regression equation. So, we estimate the re-
gression of breeding values on phenotypic deviations, bA/P and put the regression 
line into the graph (Figure 2). The slope of this regression is 0.3 and it passes 
through the origin.  
 

Figure 2. Plot of breeding 
values and phenotypic 
deviations for 200 indi-
viduals, together with the 
regression line corre-
sponding to bA/P, assuming 
a h2 of 0.3 
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Using the regression line we can see the following: 

 The expected breeding value can be calculated for any individual with a cer-
tain phenotypic deviation. For example, in the example a phenotypic devia-
tion of +2 results in an expected breeding value of +0.6.  

 We can also note that the expected breeding values are closer to zero (the 
mean) than are the phenotypic deviations. We say that the expected breed-
ing values are regressed towards the mean. 

 We can also see that we are usually not so lucky as to hit the target exactly, 
there is always some prediction error, i.e. there is a difference between pre-
dicted and true breeding value. 

 
What we have done using the line in Figure 2, can be expressed in statistical or 
mathematical terms, as that we calculated the expected value of the breeding 
value, given the phenotypic value, E(A|P).  
 
E(A|P)  was obtained by multiplying the regression coefficient of breeding value 
on phenotypic value (bA/P) by the phenotypic deviation. We usually call E(A|P) a 
predicted breeding value, and it is often denoted with a “hat”: Â.  
 
The calculations we have done can be summarized in an equation: 
 
 E(A|P) = Â = bA/P P        [2] 
 
This function is valid irrespective of if the phenotypic records are on the individ-
ual itself or on its relatives. The b-value will, however be different for different 
sources of information. How to calculate the b-values will be dealt with later in 
this chapter. 
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The regression of breeding value on a phenotypic value = heritability  
In Figures 1-2 we had both true breeding values and phenotypic values and were 
able to estimate bA/P from the data. That is not possible in real life. However, we 
can calculate bA/P from our knowledge of genetic parameters. Let us try to calcu-
late this regression coefficient from its definition in our simple example where 
the trait is measured once on the individual itself: 
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assuming that there is no covariance between genotype and environment,  
i.e. cov(A,E)=0, and that cov(A,A) = .  2

Aσ
 
What we see from equation [3] is that the regression of breeding value on phe-
notypic deviation is equal to the heritability, h2. So, if we know h2 we can use 
that to predict the breeding value of an individual if we know its phenotypic 
value.  
 
In the example in Figures 1-2, the heritability was 0.3. In Figure 3 a correspond-
ing graph is drawn for a trait with heritability equal to 0.9. (This is an unrealisti-
cally high value but we use it to give a clearer picture).  
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Phenotypic deviationFigure 3. Plot of breeding 
values and phenotypic 
deviations for 200 
individuals, together with 
the regression line corre-
sponding to bA/P, assuming 
a h2 of 0.9. 

 
 
If we compare the graph in Figure 3 with that in Figure 2 we see that: 

 The slope of the regression line is much steeper. 
 The points lie much closer to the regression line indicating that our prediction 

of breeding values is much more precise, the prediction error is much lower. 
 The phenotypic deviation gives much more information about the breeding 

value when the heritability  (h2) is high. 
 If you were to select, say, the top 10% of the animals based on their pheno-

typic values, the average breeding value of those selected would be much 
higher in Figure 3 than in Figure 2.  
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The bA/P accounts for amount of information available 
Having come this far one might again raise a serious objection, perhaps articu-
lated as: So what? If we rank the candidates of selection on their phenotypic de-
viations (P) or on their predicted breeding values (h2P), the ranking would still be 
the same. So what have we gained by calculating predicted breeding values?  
 
The answer is: nothing - so far. However, this is because we have the simplest of 
examples where all individuals have exactly the same information. Let’s do an 
exercise in thinking that will hopefully make you see the need for accounting for 
the amount of information available on an individual.  
 
Assume that we have two pigs, A and B, and that their growth records are identi-
cal: a daily gain of +30 g above the average of the population. So it would seem 
that we cannot distinguish between them. However, say now that we also know 
that these growth records are based on 1 and 10 measurements, respectively. 
Which one of the pigs would you believe to have the highest breeding value?  
 
Intuitively, we would say that we believe that the phenotypic deviation of pig B is 
a better representation of its breeding value, than is the phenotypic deviation of 
pig A.  By measuring the trait 10 times on individual B we have excluded much 
of the temporary variation that affects the single measure of pig A.  
 
Intuition could help us in this situation as both A and B had an identical pheno-
typic deviation. But what if A had grown 90 g better than the average? And what 
if we have other individuals with varying phenotypic values and number of ob-
servations as well? Then we clearly cannot get by on intuition alone, we need a 
more scientific approach. 
 
Let’s put the intuition into statistical terms. By increasing the number of observa-
tions, the denominator in equation [3] will be decreased, while the numerator will 
remain unchanged. The reason is that with repeated measurements the environ-
mental variation is reduced and the phenotypic variance is calculated as 

2
Pσ  = 

n
E

A

2
2 σ

σ +   

where n is the number of measurements (if we have no other permanent effect 
than genetic).  Compare with 2 2 2

P A Eσ σ σ= +  when we had one measurement. 
 
If the phenotypic variation is reduced the heritability will be increased (because 
h2 =  2 /A

2
Pσ σ ). The heritability of an average is thus higher than the heritability 

of a single measurement of the same trait. If h2 of a single measure was 0.3, then 
the heritability based on 10 measurements becomes 0.81. So to get the predicted 
breeding value of pigs A and B in the example above, we use equation [2] and 
multiply +30 by 0.3 and 0.81, respectively, and get ÂA = +9 and ÂB = +24. So pig 
B is better, just as we thought!  
 
Some comments on terminology   
Before going on, we would like to make a note on terminology, because it may 
often be quite bewildering for the new student of animal breeding. Up till now we 
have been a bit “sloppy” in our use of terminology. We have used the symbol P 
both for a single phenotypic measure and for an average of n observations, as we 
referred to equation [3] in both cases. This may be confusing. Therefore, in the  
following when we talk about a phenotypic measure that is used in prediction of  
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breeding values, we will call it X instead, and specify exactly what the variable X 
stands for. Therefore, we will write bA/X  instead of bA/P. When X=P (i.e. a single 
measurement), bA/X =h2 and when X = nP , i.e. an average of n observations,  

bA/X  =

n
E

A

A
2

2

2

σ
σ

σ

+
  , and so on.  

Also, we have sometimes talked about phenotypic values and phenotypic devia-
tions interchangeably. As pointed out earlier the phenotypic values are normally 
expressed as deviations from the mean, and in the future X will always be a de-
viation. 
 

Different sources of information are used in genetic evaluation 
So far we have only given examples where the traits have been measured on the 
individuals themselves, i.e. on the individuals to be genetically evaluated. In prac-
tice we often also use records from relatives, such as progenies, half-sibs, full-
sibs, parents and grandparents (Figure 4).  

Maternal
grandsire
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Several factors influence which sources of information to use when predicting 
breeding values for a trait: what information is available, the heritability of the 
trait, and how and on what individuals the trait can be measured. In genetic 
evaluation in practice it is common to combine information from several sources. 
 

 Information on the individual itself (α), i.e. the candidate to be evaluated for 
selection, is commonly used, when the trait in question can be measured on 
the individual (directly or indirectly). Sometimes this is not possible, e.g., 
traits that are sex-limited (e.g. milk production, female fertility) cannot be 
measured in male animals. Traits like carcass composition and meat quality 
cannot be measured on live animals, unless an indirect method can be used 
(e.g. ultra-sonic measurement of carcass composition). Use of records on the 
candidate itself is called performance testing.  

 
For performance testing to be efficient, heritability should be at least moder-
ately high. As we have seen already, the phenotypic deviation comes closer to 
the true breeding value as the heritability increases (e.g., compare Figure 2 
and 3).  
 

Figure 4.  Examples of sources of  infor-
mation used in genetic evaluation. The 
figures show the additive genetic relation-
ship (aiα) between the various sources (i) 
and the individual itself, i.e. the candidate 
to be evaluated, the proband (α) 
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 Using phenotypic records on progenies is generally the most accurate source 
of information for genetic evaluation. The average phenotypic value of a 
progeny group gives a good indication of the additive genetic effect (i.e. the 
breeding value) of the candidate. The value of the information increases with 
the size of the progeny group.  

 
Progeny testing is useful also when the heritability is low, and can be used 
even for traits with a heritability below 0.1, assuming the candidate has a 
large number of progenies (~100-150). The disadvantage is that it takes time 
before results on progenies are available. Progeny testing is first of all used 
for genetic evaluation of male animals, as they usually get many more proge-
nies than females, especially when AI is practised. 
 

 Phenotypic records on the candidate’s sibs, half sibs and full sibs, are often 
used in addition to other information, or to give supplementary information, 
for example on traits that cannot be measured on the candidate itself. The ac-
curacy of sib testing depends on the number of sibs that have records. Full 
sibs are usually raised in the same herd, they have a common environmental 
effect. This may cause a bias when they are used for prediction of breeding 
values, unless we are able to adjust for it.  

 
 Information on pedigree (parents, grandparents) is generally available even 

before the candidate is born, and can thus give very early information. How-
ever, the genes from each locus of the parents are transmitted at random, so 
information based on pedigree alone is not very accurate, but can be valuable 
as additional information. The additive genetic relationship, and thus the pro-
portion of common genes between the candidate and the pedigree, is halved 
for every generation backwards. If the breeding values of the parents are well 
known there is little to gain in using information on grandparents (actually, if 
the parents true breeding values were known, there would be nothing gained 
in using grandparental information). 

 

As already mentioned, all information available is usually utilized when an ani-
mal’s breeding value is predicted. The weight given to a specific source of infor-
mation depends on the additive genetic relationship with the candidate, the herita-
bility and the amount of information, i.e. the number of progenies or sibs, etc. In 
the coming pages we will show how breeding values can be calculated when dif-
ferent types of information is available. 
 



Complex situations need flexible methods for calculating E(A|P) 

To get the predicted breeding value or E(A|P), we need to get a bA/P that we can 
multiply by the phenotypic deviation (as E(A|P) = bA/P P). We have only shown 
two simple examples so far, when the phenotypic deviation is based either on a 
single measure or on several measures on the individual itself. There are innu-
merable other situations, some of which will be described in the rest of the chap-
ter or in the appendix. Just to mention some, we progeny test bulls to get their 
breeding value for sex-limited traits like milk production, we use indicator traits, 
e.g. measures on live animals, when we want to improve the carcass characteris-
tics, and we may want to combine different traits and different sources of infor-
mation. 
 
Not only bA/P, but also the phenotypic value (P) depends on the practical situa-
tion. As you probably remember, a phenotypic record may be influenced by sev-
eral factors, illustrated in Figure 5. 

Figure 5. Various factors 
influencing the phenotypic 
value. 

P
phenotypic 

value

mean ( μ )
A = additive genetic effect

D, I = gene combinations

systematic environ- 
mental effects
e.g. age, season, sex, parity

E’ = random environ-
       mental effects

M = maternal effects

 
To get a proper prediction of an animal’s breeding value (the additive genetic ef-
fect) we must adjust for the influence of systematic environmental effects and 
whenever applicable also for maternal effects and dominance. It is important to 
adjust for systematic effects, as those are common for groups of animals, and may 
be interpreted as contributing to genetic differences if not accounted for. For in-
stance, say that you want to compare the growth rate of two lambs born in the 
same herd. One of the lambs is single-born and the other is a triplet. The single-
born lamb will have a better chance to grow fast and its genetic capacity will 
likely be overestimated if no adjustment is done for litter size at birth. Moreover, 
using breeding values for growth rate that are not adjusted for litter size may re-
sult in reduced fertility, as lambs from small litter sizes will have an advantage in 
growth rate. 
 
A flexible machinery is needed to handle all these possible situations in a practi-
cal manner. 
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Two specific approaches: selection index theory and mixed 
linear models 
There are two commonly used methods for prediction of breeding values, selec-
tion index theory and mixed linear models (often called BLUP, which stands for 
Best Linear Unbiased Prediction. To be strictly correct, BLUP is not a method but 
a property of the predictor.). The selection index theory was developed in the 
1940’s and was the first method used in practice. The principle for using mixed 
linear model methodology for the prediction of breeding values was chiefly de-
veloped by C.R. Hendersson in the late 1940’s and the method has been used 
since the mid-1970’s, increasingly so with improved computing resources. 
 
The actual procedures involved in the two methods are very different and it may 
be difficult to see any similarities between them. Therefore, in this introduction 
some characteristics of the methods will be mentioned briefly. We will come back 
to these characteristics later as well. We will also try to point out the similarities 
with the general approach outlined previously.  
 
First of all, remember that what we are looking for is E(A|P), i.e. the breeding 
value! This is true, regardless of whether selection index theory or mixed model 
methods are used.  
 
In our previous general approach we used the knowledge of h2 to calculate bA/P. 
This is still true: we need to know the genetic parameters for both of these meth-
ods to work.  
 
The two methods for prediction of breeding values, selection index theory and 
mixed model methodology (BLUP) can both handle adjustment for systematic 
(often fixed) “environmental” effects, but it is done in different ways. In our gen-
eral approach we stressed that we dealt with phenotypic values as deviations from 
the mean. We also assumed (but never actually said it) that the individuals were 
influenced by the same systematic environmental effects, or that the records for 
these effects were adjusted before deviating the value from the mean. This is the 
procedure for the selection index method: we need to adjust the records before-
hand and deviate them from the mean. This means that the adjustment factors 
are estimated on previous (“historical”) data. In statistical terms a breeding value 
predicted through selection index theory is BLP (Best Linear Prediction), but it is 
not guaranteed to be unbiased. 
 
As a contrast, with the mixed linear models (BLUP) the adjustment is done 
automatically in the method itself. Genetic and environmental effects, as well as 
the mean, are estimated simultaneously. This is a big advantage, as it guarantees 
that the predicted breeding values are unbiased. That means that we predict what 
we expect to do. 
 
What we will now say may seem strange at first: The selection index theory is a 
method to predict breeding values, but it is very seldomly used for that purpose 
any more. So why learn about it at all? The main reason is that selection index 
theory provides a simple way to calculate the precision (accuracy) of selection 
before you set up a breeding program. This is very useful for comparing alterna-
tive strategies. Mixed linear models, on the other hand, are typically only used 
when you actually have real data (phenotypic records), and want to get predicted 
breeding values. You can calculate the precision with this method as well, but this 
is usually not done until one has the actual data. 
 



For selection index theory, you don’t need data, you only need to know the ex-
pected structure of the data or, expressed differently, which sources of informa-
tion that are planned to be used in the genetic evaluation. Some examples, one 
would typically use selection index theory to compare the expected precision in 
selecting pigs on 1 or 10 measures of growth rate, respectively, or to compare 
how the precision would change if heritability increases from 0.3 to 0.9. One 
could also compare the precision of using performance testing and progeny test-
ing at a given heritability and progeny group size.  
 
We will come back to the exact definition of precision later, but you already saw 
the difference in precision in predicting breeding values from Figure 2 vs. Figure 
3, there was much less prediction error in Figure 3 and thus a higher precision. 
 
Another reason for learning about selection index theory is that it provides a very 
useful framework when you want to improve several traits at the same time, by 
ensuring that you put the correct relative weighting on all traits in the selection 
criterion. 
 
The two types of methods are summarized in Figure 6. 
 

Figure 6. Schematic description 
of the working procedure for 
selection index and mixed 
model methods. 

Describe phenotypic records
with a statistical model, where μ,
genetic and “environmental” 
effects are all included 

Set up mixed model equations
and solve for the genetic effects
e.g. animal (aij) or sire (sj) which
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with the fixed effects
(gives “automatic” adjustment) 

Breeding value
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Selection index theory 
We will describe selection index theory starting from a very general and broad 
description, but going almost directly to a very simple example.  
 
One of the first steps in setting up a breeding program is to determine the breed-
ing goal, i.e. to decide what traits should be genetically improved, as well as to 
determine their relative importance. In selection index theory this is done by de-
fining a linear breeding goal function, usually called T (short for True breeding 
value): 
 
Breeding goal (or true breeding value) = T = v1A1 + v2A2 +…+ vmAm = v’a   [4] 
 
where vi expresses the relative importance of the breeding value Ai, i.e. the rela-
tive importance of each one of the traits in the breeding goal. The weights vi are 
usually called economic weights, but they may be based on other factors than 
purely economical. The procedures of calculating economic weights will not be 
dealt with in this chapter, here we just assume that we know them. The last term 
of the equation (v’a) describes the equation in matrix language, and v’ is a row 
vector of economic weights and a is a column vector of true breeding values. 
 
In some literature the breeding goal is called “aggregate genotype” because it 
gives a good description of eq. [4]. When several traits are included in the breed-
ing goal we often want to predict a value combining all the traits, i.e. the “aggre-
gate genotype” of the individual. If only one trait is included in the breeding goal 
(m=1) then the breeding goal function will be T = A, i.e. the true breeding value 
of the individual with regard to the specific trait. 
 
The breeding goal T itself is unobservable, because it contains the true breeding 
values, so T needs to be estimated by some other function. We call this estimator 
(or predictor) the index, and it contains phenotypic information, i.e. information 
that we really can observe: 
 
Index (or predicted breeding value) = = b’x [5] 1 1 2 2

ˆ .. n nT I b X b X b X= = + + +
 
where bi is a so-called selection index weight (sometimes just called b-value), for 
the phenotypic measure Xi. As mentioned earlier, all the X’s are pre-adjusted for 
systematic environmental effects and deviated from the mean. Just as in [4] the 
last part (b’x) is the expression in matrix language, where b’ is a row vector of 
index weights and x is a column vector of phenotypic deviations. 
 
As an example, X1 could be birth weight of the individual, X2 growth from birth to 
weaning of the individual, X3 birth weight average of full sibs, X4 growth from 
birth to weaning average of full sibs, et cetera. So, we may utilize phenotypic ob-
servations of several traits, measured on one or several sources of information. 
 
Please note that the number of breeding goal traits (m) is not necessarily the same 
as the number of selection index traits (n). Also, trait 1 in the goal, need not be 
identical to trait 1 in the index (we may use an indirect measure of it), and so on. 
But we will show that clearly later. 
 
So, we know how to define what traits are included in the breeding goal, their 
economic weights and what phenotypic measures are available on the selection 
candidates or their relatives. But we do not know the index weights, the b-values. 
So, the million-dollar question is: how do we get the index weights?  
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Finding the selection index weights 
Selection index theory is based on linear regression using least squares. We try to 
predict T with I: 
 
 T  = I + e [6] 
 
  v’a = b’x + e [7] 
 
where e =(T-I), the residual, often called “error”. We use least squares which 
means that we want the residual or error sum of squares to be as small as possible, 
i.e. E(T-I)2 is minimized. This is the same as requiring that the correlation be-
tween the breeding goal (T) and the index (I) be maximized. We call this cor-
relation rTI. In words, this means that we find the b-values (the vector b) such that 
the index predicts the true breeding value in the best possible way. For this rea-
son, the selection index is also sometimes called Best Linear Predictor or BLP. 
 
The proof of how the b-values are chosen is given in appendix 1. Here we will 
just show the end result of that proof. As we may have several traits in both T and 
I it becomes very convenient to describe the resulting equation system using ma-
trix algebra, also because computer programs often deal with matrices. If you feel 
that you would need a brief review of matrix algebra, please have a look in the 
chapter “Statistical concepts” before continuing here. 

Derivation of selection 
index  equations:  
Appendix 1 

 
Now, back to finding the selection index weights. The system of equations from 
which the b-values that minimize E(T-I)2 can be found is shown in appendix 1 to 
be: 
 
 Pb = Gv  [8] 
 
with solution: 
 
 b = P-1Gv [9] 
 
where  
 
P = var(x), is a square (nxn) matrix of variances (diagonal) and covariances 

(off-diagonal elements) among the phenotypic measures Xi (i=1..n), and P

= P-1b G

v

=P b G

v

P

-1 
is its inverse, 

b is the wanted (nx1) vector of index weights (the b-values), 
G = cov(x, a), is a (nxm) matrix of additive genetic covariances between the n 

index traits and the m breeding goal traits, and 
v is a (mx1) vector of economic weights. 
 (Please note that the matrix P is something different than the symbol P for 

the phenotypic value that we used e.g. in eq. [1]) 
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If we write out equation [8] specifying the matrix elements it becomes: 
 

1 1 1 2 11 1 2 1

2 1 2 2 21 2 2 2

1 21 2

2
1 1

2
2 2

2

..

..
. . . .. . . . . .

..

mn

mn

n n n mn n n

X A X A X AX X X X X

X A X A X AX X X X X

X A X A X AX X X X X n m

b v
b v

b v

σ σ σσ σ σ
σ σ σσ σ σ

σ σ σσ σ σ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥

⎤
⎢ ⎥ ⎢

⎢ ⎥ ⎢ ⎥
⎥

⎢ ⎥ ⎢=⎢ ⎥ ⎢ ⎥
⎥

⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥

⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎥⎣ ⎦ ⎣⎣ ⎦⎣ ⎦ ⎦

m

v

v

v

 [10] 

 
                       P                          b     =                     G                         v 
 
and if we carry out the matrix multiplication on both sides in [10] we get: 
 

1 1 2 1 1 1 1 2 1

1 2 2 2 2 1 2 2 2

1 2 1 2

2
1 2 1 2

2
1 2 1 2

2
1 2 1 2

..... .....

..... .....

.
..... .....

n m

n m

n n n n n

X X X X X n X A X A X A m

X X X X X n X A X A X A m

X X X X X n X A X A X A mn

b b b v v

b b b v v

b b b v v

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

+ + + = + + +

+ + + = + + +

+ + + = + + +

 [11] 

 
Looking at this mess, it is easy to understand why one rather would use matrix 
algebra and write Pb=Gv! 
 
The equation systems [8]-[11] may seem a bit difficult to understand right now so 
we will directly apply these equations in the same simple example that we used in 
our general approach previously. What is easy to see, though, is that we will get 
solutions for the b-values if we find out what figures to put into the other matri-
ces/vectors. 
  

Example: One trait in breeding goal – recorded on the individual  
This is the same example that we had in our general approach previously, i.e. a 
breeding value to be predicted from the phenotypic performance of the individual 
itself. This means that the breeding goal T in this case consists of only one trait 
(say, growth of the pig), and therefore there is no need for economic weights, or 
one can say that all weight is given to this trait, i.e. v1 = 1. We also have only one 
phenotypic observation, X (growth), and thus P contains only one value, the phe-
notypic variance of the trait. Similarly, G only contains one value, which should 
be the additive genetic covariance between the index trait and the goal trait.  
 
Thus in this example we have the situation that T = A1 and I = b1 X1. So, if we 
insert this in [8] or [10] we get: 
 
 [ ] [ ]

1 1 1

2
1 1X X Ab vσ σ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦     [12] 

 
where v1 =1. We have only one measurement and thus 

1

2
Xσ will be the phenotypic 

variance for this trait. Because the index trait and the goal trait are one and the 
same and measured on the same individual (additive relationship is 1), the covari-
ance 

1 1X Aσ becomes identical to the additive genetic variance, 
1

2
Aσ . Inserting this 

in the equation above gives 
 

 1 1 1 1 1 1 1 1 1

1 1

2 2
( )

2 2
1

X A A E A A E A A

P Ab

σ σ σ σ

σ σ
+= = + =

= =

σ
 [13] 
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and if we solve for the index weight we get: 
 

 1

1

2
2

1 2
A

P

b
σ
σ

= = 1h  [14] 

 
and if we put that into the index equation [5] we get: 
 
  [15] 1

2
1 XhI =

 
Now, we are done! Using selection index theory gave exactly the same result as 
the general approach used previously. And we see that the index weight we get 
by using the equation Pb=Gv is the regression of breeding value on phenotype, or 
the heritability of the trait. 
 

Selection index theory can also handle more complicated situations 
The selection index equations given in [8] can be used for any situation. What 
will differ is the calculation of the variances and covariances in P and G. For ex-
ample, say that the trait in the breeding goal is measured on p progenies instead of 
on the individual itself. Then the variance element 2

Xσ in P will be the phenotypic 
variance of a mean instead of just the variance of the trait. For calculation of G 
we need to account for the additive genetic relationship between the proband α 
(the individual for which we want to get the breeding value) and the information 
source. This relationship between α and the progeny is 0.5. Another example, if 
the trait measured is not the same as the trait in the breeding goal then the covari-
ance between the traits will be encountered in the element on the right hand side. 
 
In summary we can say state that selection index theory can handle situations 
with:  

 One or several traits included in the breeding goal and /or in the index 
 Trait(s) recorded on one or several sources of information  
 Traits in index and in breeding goal being the same or different. 

 
What you need to do is to define which traits will be in the breeding goal (will 
affect how G is set up). You also need to define which traits will be in the index 
and the type of individuals (information source) each trait is recorded on (will 
affect the construction of both P and G). If there are several traits in the breeding 
goal you also need to enter values for their relative importance ("economic 
weights").  
 
In the next page you find formulas to calculate the diagonal and off-diagonal ele-
ments of P, as well as the elements of G. Having these formulas you can predict 
breeding values for almost any situation with regard to traits and sources of in-
formation.  
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Diagonal elements         of P:

Off-diagonal elements           of P:( )
i jX Xσ

Elements           of G:

Selection index equations in general

1 1 1 2 11 1 2 1

2 1 2 2 21 2 2 2

1 21 2

2
1 1

2
2 2

2

..

..
. . . .. . . . . .

..

mn

mn

n n n mn n n

X A X A X AX X X X X

X A X A X AX X X X X

X A X A X AX X X X X n m

b v
b v

b v

σ σ σσ σ σ
σ σ σσ σ σ

σ σ σσ σ σ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

Normal
equations:

• same info source
- different traits:

( 1) iiPP AAp a
p

σ σ+ −% %
• different info sources

- different traits: 

ij AA CCa σ σ+% %

• different info sources
- same trait

2 2 2
ij A Pa cσ σ+

2 2

2

1 ( 1) ( 1)( )ii

P

n r p a h c
n

p
σ

+ − + − +
2( )

iXσ

P b = G       v

trait in I & T is: 2 2 2
i P i Aa h aα ασ σ=• the same i AAa ασ %• different

( )
i jX Aσ

 
 
where 

n number of observations per individual in information source i 

p number of individuals in information source i 

aii relationship between individuals in information source i 

aij relationship between individuals in two different information sources 
aiα relationship between the candidate for evaluation (α) and the individuals  

in information source i 

r repeatability of the trait with repeated measures 

h2 heritability of the trait 

c2 influence of common environment (within or between info sources) on  
a trait 

2
Pσ  phenotypic variance for the trait 
2
Aσ  additive genetic variance for the trait ( 2 2

A Ph 2σ σ= ) 

PPσ %  phenotypic co-variance between two traits  ( 2 2
p PPP Prσ σ σ=% % ) 

AAσ %  additive genetic co-variance between two traits   ( 2 2
g AAA Arσ σ σ=% % ) 

ccσ %  effect of common environment (between info sources) on two traits 
 
 
Now, a suggestion that might be of help to you when you need to calculate the  
elements of the matrices in the selection index equations.  

• Write a "symbol" for each information source and trait both to the left and on 
top of the empty P matrix (e.g., trait 1 measured on the individual itself you  

 may call "α-1", trait 2 measured on 50 progenies "50P-2", etc) 

• Write a "symbol" for each trait in the breeding goal (traits to be improved in 
individuals) on top of the G matrix (e.g.: trait 1, i.e. same trait as in the index  

 "α-1", trait 3, say, a trait not included in the index "α-3", etc). 
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Make symbols that you find informative. Indicating systematically what to in-
clude in P and G will make it easy for you to choose the appropriate formula for 
every element to be calculated, and to include the information required. 
 
As you could see above, the selection index theory does consider a number of 
factors, such as heritabilities, phenotypic variances and economic weights of 
traits, genetic and phenotypic correlations between traits, family size and type, 
and influence of common environment. It is important to remember, though, that 
the selection index theory per se does not take into account any systematic effects 
that may have influenced the phenotypic records. Any adjustment required needs 
to be done in a separate step. As pointed out earlier, the phenotypic records (Xi) 
that are included in the index (I) must be the adjusted values (expressed as devia-
tions).   
 
 
Adjustment of phenotypic records 
The phenotypic records often need to be adjusted for systematic (fixed) effects, 
such as age, parity, litter size, days open, sex, herd, year, season, management, 
etc. Several of those effects fluctuate very little over time, so accurate estimates of 
their effect may be obtained from previous (“historical”) sets of data. Effects of 
factors like herd, year, season, and management fluctuate more and are therefore 
best estimated directly from the data to be used in the genetic evaluations, as is 
done in the BLUP procedure. The option available when selection index theory is 
used for genetic evaluation is adjustment of fixed effects based on previous data 
sets. This is sometimes used also in BLUP, e.g., for factors where the effects do 
not fluctuate very much from year to year. 
 
Phenotypic records are adjusted in order to be comparable. In statistical terms this 
means that they after the adjustment should have the same mean and variance. If 
this is not the case some of the predicted breeding values may be overestimated, 
while others are underestimated. It is thus important that the adjustment is done as 
correctly as possible. The main procedures for adjustment of phenotypic data are: 
 

 Additive adjustment (affects the level only) 
 Multiplicative adjustment (affects both level and variation) 
 Deviation from a mean of comparable individuals (affects level only) 

 
Additive and multiplication adjustments are both based on using adjustment fac-
tors based on estimates from a statistical analysis (usually least squares analysis). 
It may for example be the effect of male versus female animals. In additive ad-
justment the adjustment factor is added to one of the sexes to make the pheno-
typic records comparable to those of the other sex. In multiplicative adjustment 
the same is achieved through multiplication with the adjustment factor. Multipli-
cative adjustment is preferable when the variation is related to the level of the trait 
(higher level, higher variation). The principle for additive and multiplicative ad-
justment, respectively, is illustrated in Table 1. We have analyzed milk produc-
tion records with a model containing effects of mean, calving month and possibly 
other factors as well. We arbitrarily chose the month August to be the reference 
point. 



 
 
Table 1. Example of additive and multiplicative adjustment factors for effect of  
calving month on 305-day milk production in dairy cattle. 

   Adjustment factor 
Model  
term 

 
Estimate 

 
  ˆ ˆiaμ +  

Additive 
Ki= 8ˆ ˆia a−  

Multiplicative 
Mi = 8ˆ ˆ ˆ ˆ( ) /( ia a )μ μ+ +  

 μ  7987    
 a1  -72  7915  -30  0.996 
 a2  -132  7855  30  1.004 
 a3  -311  7676  209  1.027 
 a4  -347  7640  245  1.032 
 a5  -407  7580  305  1.040 
 a6  -302  7685  200  1.026 
 a7  -287  7700  185  1.024 
 a8  -102  7885  0  1.000 
 a9  -20  7967  -82  0.990 
 a10  41  8028  -143  0.982 
 a11  33  8020  -135  0.983 
 a12  0  7987  102  0.987 
 
The adjusted records would become: 
 
 *i i iy y K= +  or 
 *i i iy y M=  

where yi is the unadjusted record of a cow calving in month i. 
 
As pointed out previously, when selection index theory is used for prediction of 
breeding values the phenotypic observations are expressed as deviations from a 
mean (often the current herd mean). This is in fact also an adjustment, which may 
adjust for systematic effects that fluctuate from year to year (e.g. herd, year, sea-
son).  
 
 
Finding the precision of the selection index 
As mentioned initially, one of the main uses for selection index theory is to find 
the precision of the selection criterion. This is actually the measure that was one 
of our starting points in deriving the selection index equations, i.e. the correlation 
between the true and the predicted breeding value (rTI), which is often called the 
accuracy of the selection criterion. The accuracy in prediction of breeding values 
has an important impact on the genetic improvement that can be expected as a 
result of selection, and is thus a useful measure.  
 
Rather unfortunately, animal breeders have traditionally called rTI accuracy. In 
statistical literature what rTI measures, is called precision. Accuracy on the other 
hand, is related to bias. In the graph in the next page we try to illustrate the dis-
tinction between these two measures of goodness of fit. 
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The panel a) describes an ideal situation, where we both hit the target without bias 
and have very good precision (the darts are very close to each other). 
 
Panel b) shows a situation with no bias but with rather bad precision, the arrows 
are spread fairly wide around the board. 
 
Panel c) shows a case with high precision but large bias. We may have had a large 
material at our hands, but somehow the data was flawed, or we failed to account 
for an important environmental factor. 
 
Panel d) finally shows the worst situation of all: we have both bad precision and 
large bias. 

a) b)

d)c)

 
There is a measure that combines both of these aspects, precision (defined as pre-
diction error variance, PEV) and accuracy, the mean squared error which is de-
fined as: 
 
 MSE = PEV + (bias)2

 
where the bias is squared because it can take both positive and negative values, 
none of which are favourable. 
 
So, whenever you hear the word “accuracy” please make sure that the person who 
uses the word means the same thing as you do (whatever that is). 
 
Let us try to explain precision in an intuitive way first. As you know by now, we 
try to predict T by using the index, I. On another level, one can say that the vari-
ance of I should explain as much of the variance in T as possible, or reversely, the 
variance not explained by I should be as small as possible. If we use the analogy 
of circles for variances, this can be described as in Figure 7. 
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Looking at the circles, one can see that the larger the variation is in the index (I), 
the higher will the precision be in our genetic evaluation and the lower will the 
prediction error variance, PEV, be. At maximum the index explains all the varia-
tion in the true breeding value (T), and the circle for I is as big as that for T and 
falls fully within the circle for T. 
 
Actually, the above description is not unique for the selection index method. In 
ordinary statistical analysis we often use the R2-value (coefficient of determina-
tion) when we want to find out how much of the variation in y (corresponds to our 
T) that can be explained by a certain model (corresponds to our I). The R2-value, 
which is in fact a squared correlation, can be obtained as the amount of variation 
explained by the model divided with the total variation. So, for our situation with 
T and I we define: 
 
 

 2

2
2

T

I
TIr

σ
σ

=  [16] 

 
This value is often called reliability, at least in international dairy cattle applica-
tions. From [16] we get the accuracy as:  
 

 
2

2
I

TI
T T

r Iσ σ
σ σ

= =  [17] 

 
So, we need to know how to calculate the variance of the index ( 2

Iσ ) and of the 
breeding goal ( 2

Tσ ), in order to get rTI. 
 
The variance of the index is equal to: 
  
   2

1 1 2 2( ... )I nVar b X b X b Xσ = + + + n

 

Figure 7. Schematic description 
using Venn diagrams of how 
much variation in T that is ex-
plained by variation in I. The 
outer, big circle reflects 2

Tσ  

and the inner circle 2
Iσ . The 

dark grey surface is the part of 
the variation in T that is not 
explained by the index, the pre-
diction error variance, PEV.  

2 
I σ 

2
Tσ 

2
Tσ

 

 

2
Iσ

σT
2 - σI

2
PEV=

The index explains little
of the variance in T

low precision

The index explains much
of the variance in T 

 high precision 



or in matrix terms 

P b

b’  
 b´Pb [18] 
 
and the variance of the breeding goal is: 
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m  2
1 1 2 2( ... )T mVar b A b A b Aσ = + + +

v
v’

C

Derivation of vari-
ance of I and T: 
Appendix 2 

 
 v’Cv [19] 
 
where C is a mxm matrix containing the additive genetic variances (diagonal) and 
covariances (off-diagonal elements) among the breeding goal traits. Then equa-
tion [16] becomes: 
 

 
Cvv
Pbb

'
'2 =TIr  [20] 

 
Even though this equation involves matrices and vectors, the end result is a scalar.  
 
Let us examine the value of in our simple example of phenotypic information 
on the individual itself. Equation [

2
TIr

20] would become: 
 

 2
2

2

2

2

2
2

2

2

2

222
2

11
hhhr

P

A

A

P

A
P

P

A

A

P
TI ===
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σ
σ
σ

σ
σ
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σ
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and thus 2
TIr h= = h   [21] 

 
So, in this simple example, becomes identical to the heritability. We alluded to 
that precision was related to the level of the h

2
TIr

2 when we compared Figures 2 and 
3. We saw in the graph that prediction was more precise when h2 was higher, and 
that prediction error was smaller. Now, we have also proven it, mathematically. 
 
As seen from [16] the  value is directly proportional to the variance of the in-
dex (

2
TIr

2
Iσ ). This means that also this variance, or more commonly the standard 

deviation of the index ( I TI Trσ σ= × ) can be used as a measure of the precision 
of the predicted breeding value, as long as you have the same breeding goal (and 
thus Tσ is constant). A high σI thus indicates a high precision.  
 
We may also be interested in the prediction error variance, i.e. the variance un-
explained by the index (the dark grey parts of the circles in Figure 7). This vari-
ance is: 
 
 2 2 2 2 2 2(1 )T I T TI T TIPEV r r 2

Tσ σ σ σ σ= − = − = −  [22] 
 
and the standard error of the index, SE(I), is the square root of PEV. A low 
standard error means an index with a high precision. Just as for an ordinary esti-
mate, the standard error can be used to calculate a confidence interval for a given 
index. 
 



As you have seen, there are several measures than can be used to indicate the pre-
cision of a breeding value and you need to be careful with the interpretation of 
these. Be especially aware of the difference between the standard deviation of the 
index and then standard error of the index! Remember: 
 
Measure should be 

Accuracy, rTI HIGH 
Standard deviation of index, Iσ  HIGH 
 
Prediction error variance, PEV 

 
LOW 

Standard error of the index LOW 
 
The efficiency of the index also depends on the parameters that are entered into it. 
For example, we generally assume that the genetic and phenotypic variances and 
covariances are known without error, but this may not be true in practice. It has 
been shown that errors in the estimates of the heritability and repeatability of a 
trait have comparably little effect on the usefulness of the index, while errors in 
the genetic and phenotypic correlations can be more serious.  
 
 

Special case: one and the same trait in index and in breeding goal 
For the situation when there is only one trait in the breeding goal and this trait is 
measured on one or several sources of information the rTI value can simply be 
calculated as: 
 

 
1

n

TI i i
i

r b a α
=

= ×∑  [23] 

where iaα  is the additive genetic relationship between the proband α and the in-
formation source for index trait i, and the sum is over all information sources. 

Using this formula for our simple example with phenotypic information on the 

individual itself gives 2 1TIr h h= × = . If the trait is measured on the individual 

itself and on a number of half-sibs as well, then 1 21 0.TIr b b= × + × 25  , etc. To 
calculate the rTI value you thus first need to use selection index theory to calculate 
the b-values, as shown previously.  

Another common situation is when you have progeny testing for the breeding 
goal trait, e.g. milk yield in dairy cattle. Then the rTI  for p progenies can be calcu-
lated as: 

    TI
pr

p λ
=

+
  [24] 

where   
2 2

2 2

4e

s

h
h

σλ
σ

−
= = .  

For heritabilities of 5% and 30% and 100 progenies, rTI would be 0.75 and 0.94, 
respectively. 
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Special types of selection indexes 
Selection indexes can occur in different variants. For example, the index can be 
based on sub-indexes (one for each trait in the breeding goal) that are weighed 
together with their respective economic weights, i.e. I = v1I1 + v2I2+ ….+vmIm. 
This means that the economic weights can easily be modified, without the need to 
recalculate the index equations.  
 
Another useful variant is restricted selection index or desired gains selection in-
dex. By using this we can for example restrict one of the breeding goal traits to 
remain unchanged, while at the same time the expected genetic change in the 
other traits is maximized. Maintained adult weight in ewes, while maximizing 
growth rate of their lambs might be an example. 



Mixed linear models (BLUP) 
As mentioned previously, whereas selection index theory nowadays is mainly 
used to get the precision of selection when planning a breeding program, mixed 
linear models are used to get the predicted breeding values once the breeding pro-
gram is in place and we have the performance records. The breeding values we 
get are Best Linear Unbiased Predictions, and the procedure of using mixed linear 
models in genetic evaluation is therefore often called BLUP. The Best means that 
the procedure maximizes the correlation between true and predicted breeding val-
ues (rTI) or minimizes the prediction error variance; the Linear means that the 
predictors are linear (additive) functions of the observations; the Unbiased means 
that the predicted breeding values is equal to the expected value of the true breed-
ing value; and the Prediction comes from the fact that we are dealing with ran-
dom variables that we predict the outcome of (e.g., future offspring of a sire).  
 
Having a statistical model as the starting point for genetic evaluation means that 
the analysis can be applied to many different practical situations, and that we get 
a proper adjustment for systematic “environmental” effects, as those are estimated 
jointly with the genetic effects. Animals can then be compared across groups, e.g. 
herds, age groups et cetera, which gives a wider scope for selection.  No longer do 
we have to work with pre-adjusted phenotypic records deviated from the mean 
(Xi’s), we are able to use the actual phenotypic records directly. Just as with selec-
tion index theory, though, BLUP too requires that the genetic parameters are 
known. 
 
There are many different possible models that one can use in the mixed linear 
model framework. We will start by describing what we think is the most natural 
model when one can assume a purely additive genetic model– the animal model. 
 
 
Animal model with unrelated animals 
We assume that the phenotypic observations (in the following called y, instead of 
P, to conform better with statistical and animal breeding literature) can be de-
scribed by the following model: 
 
 y = mean + systematic environmental effects + animal + residual 
 
or expressed in matrix terms: 

= + +y X

b a
Z e

 
  [25] = + +y Xb Za e
 
where 
 y is a column vector of phenotypic observations 
 b is a column vector of fixed effects (mean + systematic environ-

mental effects) 
 a is a column vector of animals’ breeding values, ~IND(0, 2

aσ ) 

where 2
aσ = 2

Aσ , the additive genetic variance, 
 X, Z are incidence matrices relating fixed effects and breeding values, 

respectively, to the observations, and 
 e is a vector of residuals, ~IND(0, 2

eσ ), where 2
eσ = 2

Eσ , the envi-
ronmental variance 

 
Unless you are used to reading about linear models expressed in matrix algebra, 
equation [25] may not mean very much to you right now. Therefore, we will  
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Table 2. Example data. 
Growth Sex Animal 
200 1 1 
250 2 2 
270 1 3 
 

explain with the help of a small example. We will assume that we have observa-
tions on growth of pigs, and that we only have a mean and a fixed effect of sex in 
the model, apart from the breeding value effect. We also assume that the pigs are 
unrelated. The data is given in Table 2. 
 
If we forget about the matrix language for a while we can write the model as: 
 
 yij = μ + ki + aij + eij
 
indicating that each single phenotypic observation is influenced by the mean (μ), 
the sex i (ki) of the animal, its breeding value (aij) and a random error (eij) specific 
for each animal.  
 
More specifically the model for the three observation becomes: 
 
 200 = μ + k1 + a11 + e11 

 250 = μ + k2 + a21 + e21 [26] 
 270 = μ + k1 + a12 + e12 

 
Now, putting this into matrix language (as in [25]) it becomes: 
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21

12

e
e

⎤
⎥+ ⎥
⎥⎦

´⎡ ⎤
⎢ ⎥
⎣ ⎦

 

11 11

1 21

2 12

200 1 1 0 1 0 0
250 1 0 1 0 1 0
270 1 1 0 0 0 1

a e
k a
k a

μ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

 [27] 

 
  y = X b + Z a + e 
 
If you carry out the matrix multiplications you will see that you end up with the 
same result as in [26].  
 
We want to solve this equation system to get solutions for the fixed effects and 
for the breeding values at the same time. These solutions can be found by mini-
mizing the prediction error variance. Doing this minimization leads to the follow-
ing equation system, called Henderson’s Mixed Model Equations (MME): 

 

=

X’Z

Z’Z+Iλ

X’X

Z’X

b

a

X’y

Z’y
 

´ ´
´ ´ ´λ

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

X X X Z b X y
Z X Z Z I a Z y

 [28] 

 

where 

2 2

2 2 2 2 2

22 2 2 2

2

1
P A

e E P A P

Aa A A

P

h
h

σ σ
σ σ σ σ σλ

σσ σ σ
σ

−
2− −

= = = = =   [29] 

and I is an identity matrix, i.e. a a matrix with 1’s on the diagonal and 0’s every-
where else. This is almost the same equation system as for ordinary least squares, 
except for the variance ratio λ added to the diagonal of Z’Z, the random part of 
the equation system. As you can see this addition means that genetic parameters, 
in this case h2, needs to be known. The matrix on the left hand side is often called 
the coefficient matrix. 
 



The proof of the MME will not be given here, because it is long and complicated; 
it is given only in appendix 3. So, for now, we hope you will be satisfied by 
knowing that the solution is found by minimizing the prediction error variance, 
while also ensuring unbiasedness of the estimates and predictions, by estimating 
all effects simultaneously. Therefore, the solutions to the MME are called Best 
Linear Unbiased Predictors or BLUP. This is discussed more in appendix 3. 

Derivation of MME, 
Appendix 3 

 
Now back to our small example. Let’s assume we have h2 = 0.3, which gives  

1 0.3 2.33
0.3

λ −
= = . The MME resulting from the three observations thus will be 

(to facilitate for you to see where the figures in the coefficient matrix belong, we 
have indicated the effects included in the model outside this matrix): 
 
 μ k1  k2 a1 a2 a3 

 

1 1

2 2

1 1

2 2

3 3

3 2 1 1 1 1 720
2 2 0 1 0 1 470
1 0 1 0 1 0 250
1 1 0 1 2.33 0 0 200
1 0 1 0 1 2.33 0 250
1 1 0 0 0 1 2.33 270

k k
k k
a a
a a
a a

μ μ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

=⎢ ⎥⎢ ⎥+ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥+
⎢ ⎥⎢ ⎥

+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 [30] 

1

2

1

2

3

 

Using symbols we can see that the coefficient matrix and the vector on the right 
hand side contain the following: 

 μ k1 k2 a1 a2 a3 

1. 2.

1 11. 1.

2 22. 2.

1 1

2 2

3 3

1 1 1
0 1 0 1

0 0 1 0
1 1 0 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

tot yN n n
k kn n
k kn n
a a
a a
a a

μ μ

λ
λ

λ

∑ ∑
y
y

y
y
y

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ∑⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ∑

=⎢ ⎥ ⎢ ⎥⎢ + ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥+
⎢ ⎥ ⎢ ⎥⎢ ⎥

+⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 [31] 

 
What you can see is that the coefficient matrix consists of numbers of observa-
tions at different levels of specification, e.g. total number of observations, the 
number of observations for each one of the two sexes (n1., n2.), as well as for each 
animal. In the random part of the coefficient matrix you recognize the addition of 
λ, and you can also see that the other elements in this section are zeros. This is, 
however, only the case when the animals are unrelated.  
 
To be even more precise we can say that the entry in any given cell (row-column 
position) in X’X, X’Z, Z’X or Z’Z is the number of observations that have both 
the row-effect and the column-effect. For instance, in equation [30] in our exam-
ple the position (row 1, col. 1) shows that there are 3 observations that have μ in 
them (this is always equal to the total number of observations). Similarly, position 
(row 1, col. 2) indicates that there are 2 observations that have both μ and k1 in 
them, and so on. The 0 in position (row 2, col. 3) shows that no observations have 
both k1 and k2 (no animal could be of both sexes; not the kind of animals we work 
with, anyway).  
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For the right hand side, the values are sums of all observations pertaining to the 
effect in question. For instance, the first value (720) is the sum of all observations 
(because they all contain the mean), the second value is the sum of all observa-
tions with sex 1, and so on. 
 
If you want to, you can carry out the matrix multiplications described in [28] (e.g. 
multiply X’ by X) to see that you actually get the numbers given in [30]. (If you 
do that, you can answer the following somewhat tricky question: I put to you that 
the numbers in the coefficient matrix of MME are not really the number of obser-
vations (as suggested in [31]) but they are still equal to the number of observa-
tions! Can you explain that?) 
 
Now, let us study the equation system [30] in more detail. We look at the line per-
taining to animal 1 (line 4) and write it out: 
 
 1μ + 1k1 + 0k2+ 3.33a1 + 0a2 + 0a3  = 200 ,   which simplifies to: 
 
 μ + k1 + 3.33a1 = 200 [32] 
 
If we solve for a1 we can see how the breeding value of animal 1 is calculated in 
the BLUP procedure, i.e.: 
 
 a1 = (200-k1-μ)/3.33 = 0.3 (200-k1-μ) [33] 
 
To actually get the predicted breeding value we need to solve the equation system 
in [30], so that we get simultaneous solutions also for μ and k1. How to solve such 
an equation system and get the solutions is discussed in the next section of this 
chapter. 
 
The important thing to see from eq. [33] is that the phenotypic value (200) is ad-
justed for the fixed effect of sex 1 and deviated from the mean, and then multi-
plied by the heritability, 0.3.  
 
So, as you may have noticed already, we get basically the same solution for the 
breeding value when we use the BLUP procedure, as we had in our general ap-
proach, as well as when we used selection index theory. We multiply the pheno-
typic deviation by the regression of breeding value on phenotype, i.e. in our sim-
ple example, the heritability. The only difference is that in BLUP we adjust for 
the fixed effects directly when we solve the equation system, whereas in the other 
procedures we had to pre-adjust for these effects. 
 
 
Solving the mixed model equations 
So far we have only set up the MME ([28], [30-31]) and looked at the equations 
for an animal ([32-33]) but we haven’t solved the equation system. There are sev-
eral different ways to get the solution from the MME. 
 



Solution by inversion 
The perhaps most natural way is to invert the left hand side coefficient matrix and 
multiply that inverse by the right hand side: 
 

=
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´⎡ ⎤
⎢ ⎥
⎣ ⎦

 
1ˆ ´ ´

´ ´ ´ˆ λ

−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥+⎣ ⎦⎣ ⎦

X X X Z X yb
Z X Z Z I Z ya

 [34] 

 
(assuming the MME of [28]). Note, that we have now put hats on the b and u vec-
tors, they now contain the solutions, the estimates and predictions. 
 
In order to calculate the inverse we need to make sure the matrix is of full rank. 
This means in practice that we have to make sure that no columns (or rows) are 
additive combinations of other columns (rows). In our simple example in [30], the 
column for μ is identical to the sum of the two columns for k1 and k2. So, we can-
not estimate both μ and k1 and k2, we need to reparameterize (see chapter on 
“Statistical concepts” p 15 and 17). The simplest way is to delete the row and col-
umn pertaining to μ and then take the inverse of the remaining coefficient matrix: 
 
 μ k1 k2 a1 a2 a3 

 

1

2

1

2

3

3
k
k
a
a
a

μ 2 1 1 1 1
2 2 0 1 0 1
1 0 1 0 1 0
1 1 0 1 2.33 0 0
1

+
0 1 0 1 2.33 0

1
+

1 0 0 0 1 2.33

μ⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥⎣ ⎦

1

2

1

2

3

720
k
k
a
a
a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

470
250
200
250
270

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 [35] 

 
 

1

2

1

2

3

ˆ 0.714 0 0.214 0 0.214 470 235
ˆ 0 1.428 0 0.428 0 250 250

0.214 0 0.364 0 0.0643 200 10.5ˆ
0 0.428 0 0.428 0 250 0ˆ

0.214 0 0.0643 0 0.364 270 10.5ˆ

k

k
a
a
a

⎡ ⎤ − −⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =− −
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦⎢ ⎥⎣ ⎦

[36] 

 
So, the predicted breeding values for the three animals are –10.5, 0, and 10.5, re-
spectively. Note that the three breeding values add to zero (our assumption was 
that a~IND(0, ), i.e. has expectation zero).  2

Aσ
 
In practice, predicted breeding values are rarely used directly as they are from the 
solution of the MME. Often they are set relative to the breeding values of some 
group of animals that is not the base population, e.g., the average of the last three 
years of bulls. Sometimes the chosen average is set to 100. If we apply that in our 
example, the predicted breeding values of the three animals would be 89.5, 100, 
and 110.5. Another often used transformation is to standardize the variance, e.g., 
that one genetic standard deviation corresponds to, say, 10 units of the presented 
breeding values. If both these transformations are used the predicted breeding 
values all have positive values and are distributed around 100, with extremes at 
around 70 and 130. 
 



We can now check that equation [33] actually is true (remember that after 
reparameterization our new k1 includes the μ:  
 
  1̂ 0.3 (200-235) = -10.5a =
 
The method of inversion can, however, often be very difficult to apply in reality, 
especially for an animal model with many animals and perhaps also many fixed 
effect, such as herd effects. The matrix just becomes too large to invert. For small 
examples, however, this method works fine. 
 
 

Iterative methods 
There are several methods that use iterative procedures, i.e. they do not give the 
correct answer right away, but they need to be repeated until the solutions do not 
change any more, which is called convergence. Such methods are needed when 
the equation system becomes so large that a solution by inversion is not possible. 
We give a brief outline of such a method in appendix 4. 

Iterative solution methods, 
Appendix 4 

 
 

Animal model with relationship matrix 
The previous example is interesting because it is simple, and it shows that the es-
timate of the breeding value of an animal from MME is built on the same princi-
ples as in our general approach and as in selection index theory. However, the 
main benefit of the animal model is that you can use information from all 
relatives of an individual when solving for the breeding value.  
 
To do this we need to amend the MME a bit. Our assumption about the breeding 
values is no longer that they are ~IND(0, ), now we assume they are 
~ND(0, ), where the matrix A, the so-called relationship matrix, contains 
the additive genetic relationships among the animals. Now, the MME become: 

2
Aσ

2
AσA
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⎡ ⎤ ⎡ ⎤
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1

X X X Z b X y
Z X Z Z A a Z y

 [37] 

 
Instead of just adding the variance ratio λ to the diagonal elements of the random 
part, we add a whole matrix, A-1, the inverse of the relationship matrix, multiplied 
by λ, to Z’Z.  
 
Note that A (and thus A-1) is of the same size as Z’Z. This also means that if you 
want to predict breeding values for 10 000 animals, you need to set up a 10 000 x 
10 000 A matrix first, by use of the tabulation method, and then invert this matrix 
to get A-1, before it can be inserted into the equation system. There is, however, a 
trick to get the A-1 directly, without having to invert A. This very efficient proce-
dure works animal by animal, just as the setting up of the MME does. The proce-
dure is given in appendix 5. 

Setting up A-1 directly, 
Appendix 5 

 



Example of animal model with relationships 
We will use a very simple example to describe what the MME looks like when 
you have related animals. We assume the pedigree structure as in Figure 8. 

1 2 3 4

5 6 7

8

(9)(10) (8) (7)

(9) (10) (8)

(11)

Figure 8. Description of pedi-
gree structure of 8 animals 
(phenotypic values within 
parantheses) (from Kennedy 
et al., 1988). 

 
The model is simply: 
 

yij = μ + ai + ei
 
but with the assumption that a ~ND(0,A 2

aσ ). The ordinary least squares equation 
system (i.e. before adding A-1λ to Z’Z in [26]) becomes: 
 
                 μ    a1   a2     a3     a4   a5    a6   a7    a8

 

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

8 1 1 1 1 1 1 1 1 72
1 1 0 0 0 0 0 0 0 10
1 0 1 0 0 0 0 0 0 9
1 0 0 1 0 0 0 0 0 8
1 0 0 0 1 0 0 0 0 7
1 0 0 0 0 1 0 0 0 9
1 0 0 0 0 0 1 0 0 10
1 0 0 0 0 0 0 1 0 8
1 0 0 0 0 0 0 0 1 11

a a
a a
a a
a a
a a
a a
a a
a a

μ μ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎤⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎦

 [38] 

 
The relationship matrix A is: 

  [39] 

1 0 0 0 0.5 0.5 0 0.5
0 1 0 0 0.5 0.5 0 0.5
0 0 1 0 0 0 0.5 0
0 0 0 1 0 0 0.5 0

0.5 0.5 0 0 1 0.5 0 0.75
0.5 0.5 0 0 0.5 1 0 0.75
0 0 0.5 0.5 0 0 1 0

0.5 0.5 0 0 0.75 0.75 0 1.25

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A
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and its inverse becomes: 
 

   [40] 

2 1 0 0 1 1 0 0
1 2 0 0 1 1 0 0
0 0 1.5 0.5 0 0 1 0
0 0 0.5 1.5 0 0 1 0
1 1 0 0 2.5 0.5 0 1
1 1 0 0 0.5 2.5 0 1

0 0 1 1 0 0 2 0
0 0 0 0 1 1 0 2

−

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥= ⎢ ⎥− − −
⎢ ⎥
− − −⎢ ⎥

⎢ ⎥− −
⎢ ⎥

− −⎢ ⎥⎣ ⎦

1A

 
The MME (after adding in A-1λ to the oLS, where in this situation we assume h2 
to be 0.5 so λ is 1): 
 

    μ    a1     a2         a3         a4      a5          a6     a7        a8

  [41] 

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

8 1 1 1 1 1 1 1 1
1 3 1 0 0 1 1 0 0
1 1 3 0 0 1 1 0 0
1 0 0 2.5 0.5 0 0 1 0
1 0 0 0.5 2.5 0 0 1 0
1 1 1 0 0 3.5 0.5 0 1
1 1 1 0 0 0.5 3.5 0 1
1 0 0 1 1 0 0 3 0
1 0 0 0 0 1 1 0 3

a a
a a
a a
a a
a a
a a
a a
a a

μ μ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥− − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− −
⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥−
⎢⎢ ⎥

− − − ⎢⎢ ⎥
⎢⎢ ⎥− − −
⎢⎢ ⎥

− − ⎢⎢ ⎥
⎢⎢ ⎥− −⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦

72
10
9
8
7
9

10
8
11

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=

⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥⎢ ⎥⎥ ⎣ ⎦

 
 
Now, let’s return to finding the actual solutions to the equation system in [39].The 
inverse of the left hand side matrix becomes: 

μ a1 a2 a3 a4 a5 a6 a7 a8

μ 0.4118 -0.2647 -0.2647 -0.2353 -0.2353 -0.3235 -0.3235 -0.2941 -0.3529

a1 -0.2647 0.5987 0.0987 0.1513 0.1513 0.3151 0.3151 0.1891 0.2983

a2 -0.2647 0.0987 0.5987 0.1513 0.1513 0.3151 0.3151 0.1891 0.2983

a3 -0.2353 0.1513 0.1513 0.5987 0.0987 0.1849 0.1849 0.3109 0.2017

a4 -0.2353 0.1513 0.1513 0.0987 0.5987 0.1849 0.1849 0.3109 0.2017

a5 -0.3235 0.3151 0.3151 0.1849 0.1849 0.6352 0.3018 0.2311 0.4202

a6 -0.3235 0.3151 0.3151 0.1849 0.1849 0.3018 0.6352 0.2311 0.4202

a7 -0.2941 0.1891 0.1891 0.3109 0.3109 0.2311 0.2311 0.6387 0.2521

a8 -0.3529 0.2983 0.2983 0.2017 0.2017 0.4202 0.4202 0.2521 0.7311

[42] 
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The solution vector (after multiplying the inverse by the right hand side) be-
comes: 
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⎥

10

  [43] 

1

2

3

4

5

6

7

8

ˆ 8.7059
ˆ 0.8676
ˆ 0.3676
ˆ 0.3676
ˆ 0.8676
ˆ 0.6716
ˆ 1.0049
ˆ 0.6471
ˆ 1.3235

a
a
a
a
a
a
a
a

μ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢= −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

 
Note that here the sum of all breeding values is not zero, only the sum of the 
breeding values of the individuals from the so-called base population, i.e. animals 
that have unknown parents (animals 1 to 4). It seems that there is some kind of 
selection going on (or random drift) because the average breeding values in gen-
eration 1 (animals 5-7) is above the average of the base population. This is be-
cause the two best animals in the base population (1 and 2) contributed two off-
spring to the next generation whereas animals 3 and 4 only contributed one. 
 
Let’s have a look at two of the equations in equation [41]. First we write out the 
equation pertaining to animal 1, an animal with unknown parents but with off-
spring: 
 
 1 2 5 6ˆ ˆ ˆ ˆ ˆ3a a a aμ + + − − =  [44] 
 
and solve for the breeding value of animal 1: 
 

 1 5 2 6
1ˆ ˆ ˆ ˆ ˆ[(10 ) ( 0.5 ) ( 0.5 )]
3

a a a aμ= − + − + − 2â

2

 [45] 

 
We can note that: 
 

 the phenotypic value is adjusted for the fixed effects, in this case only the 
mean.  

 the breeding value of the offspring is adjusted for that part that comes from 
the other parent (the mate of animal 1).  

 everything is multiplied by a regression factor, in this case the within-family 
heritability, defined as  ( , 
where 

2 2 2 2 20.5 /(0.5 ) 0.5 /(0.5 (1 ))A A Ek k h h hσ σ σ+ = + −
(1 )k = − F , and F is the average inbreeding of the parents of animal 

1. In this example k=1 and h2 is 0.5, so the within-family heritability becomes 
1/3. 

 



Let’s also have a look at the equation for animal 8, an animal with known parents: 
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1
 
 5 6 8ˆ ˆ ˆ ˆ3 1a a aμ − − + =  
 

 

5 5 6 6
8 5 6

5 6 5 6

ˆ ˆ ˆ ˆ3 31 1ˆ ˆ ˆ ˆ ˆ(11 ) (11 )
3 3 2 2

ˆ ˆ ˆ ˆ1 ˆ(11 )
2 3 2

a a a aa a a

a a a a

μ μ

μ

= − + + = − + − + −

+ +
= + − −

2 2  [46] 

 
The first term is the expected breeding value based on the breeding values of both 
parents. The second term is an estimate of the Mendelian sampling term. It is 
based on the adjusted phenotypic observation deviated from the parent average 
breeding value, again multiplied by the within-family heritability. 
 
 
Precision of predicted breeding values 
The precision of predicted breeding values can be calculated also from mixed lin-
ear models. Let’s describe the inverse of the coefficient matrix in equation [37] in 
abbreviated form as: 
 

 
1 11 12

21 22

´ ´
´ ´ λ

−

−

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥+⎣ ⎦ ⎣ ⎦

1

X X X Z C C
Z X Z Z A C C

 [47] 

 
where C11 corresponds to the fixed effects part (X’X) and C22 to the random part 
(Z’Z+A-1λ). Now, prediction error variance (PEV) for the breeding values can be 
calculated as: 
 
 2

ePEV σ= 22C  [48] 
or expressed more simply, the PEV for animal i is: 
 
 2ii

iPEV c eσ=  [49] 
 
i.e. the diagonal element of the inverse matrix corresponding to animal i, multi-
plied by the residual variance. If we want the accuracy,  rTI, we can use the rela-
tionship from [22] and combine it with [49]:  
 
  2 2(1 ) ii

i TI aPEV r c 2
eσ σ= − =  [50] 

 
If we solve for  we get: 2

TIr
 
 2 1 ii

TIr c λ= −  
 
and  
 

 1 ii
TIr c λ= −  [51] 

 

where λ is as before, 
2 2

2 2

1E

A

h
h

σ
σ

−
= . 

 



In the example shown in Figure 8, if we get the inverse elements from equation 
[42] we get the following accuracies (assuming that λ=1): 
 
 

1̂a  2â  3â  4â  5â  6â  7â  8â  
Inverse ele-
ment .5987 .5987 .5987 .5987 .6352 .6352 .6387 .7311 

TIr  .6335 .6335 .6335 .6335 .6040 .6040 .6011 .5186 
  

 

Other mixed linear models 
So far we have dealt with the animal model, where every individual animal is in-
cluded in the analysis for prediction of breeding values. You have seen how the 
data is adjusted for systematic environmental effects, and how information on 
relatives is utilized by including additive genetic relationships between the indi-
viduals. We have, however, just considered one single trait, with only a single 
observation per animal. Moreover, dominance and maternal effects have been 
assumed to be of no importance.  
 
Using mixed linear models for prediction of breeding values means that various 
situations can be handled. There are several types of models that can be used for 
different purposes. We will briefly comment on some of those in the following. 
For more thorough discussion and illustrations of the use of different models, see 
for example: (Mrode, 1996) “Linear Models for the Prediction on Animal Breed-
ing Values” or (Van Vleck, 1993) “Selection Index and Introduction to Mixed 
Model Methods”. 
 
 

Reduced animal model 
An alternative to predict breeding values for animals that have progeny records is 
to use a reduced animal model (RAM). Only equations for animals that are parents 
are then included, which reduces the number of equations to be solved and thus 
makes the computing faster than when the full animal model is used. Breeding 
values of individual progenies can thereafter be predicted by back-solving from 
the predicted parental breeding values. 
 
 

Genetic groups 
Quite often animals with unknown parents are included in the genetic evaluation 
analyses (like animals 1, 2, 3 and 4 in our example on animal model including 
relationships). Such animals are generally called base population animals and the 
breeding values of animals in subsequent generations are usually expressed rela-
tive to those base animals. It may happen that the base animals come from popu-
lations with different genetic means, their origin may be from different breeds, 
different year batches or sires from different countries. If so, this must be ac-
counted for in the model, or the predicted breeding values will be biased. A way 
to handle it is to include genetic group as a fixed effect in the model and assign a 
group-identification to each animal lacking pedigree. 
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Sire models 
The sire model can be used when observations are solely on progenies. The 
breeding value of the sire is then predicted from the phenotypic average of the  
progeny group. The number of equations to solve is thus much lower than when 
the individual animal model is used. The accuracy of the predictions depends on 
the number of progenies.  
 
In model terms the sire model includes: 

Progeny observation =  mean + systematic environmental effects + sire + residual 
 
How to set up the sire model equations and predict the breeding values, is shown 
in appendix 6. The progenies only have half of their genes from the sire. An esti-
mate based on their phenotypic value thus reflects one half of his breeding value. 
The breeding value for a certain sire is therefore predicted as: 

Sire  model equations 
and  prediction of 
breeding values, see 
Appendix 6 

 
 ˆ2 jI s=         where  ˆ js  is the predicted effect of sire j.  
 
The sire model basically assumes that all progeny of a sire are from different 
dams, and that all dams are equally good. If some sires are used on better dams 
than others the quality of the dams need to be corrected for. One way to do this, at 
least partially, is to also include the father of the dam in the model, which actually 
means that the sire is evaluated both through his own daughters and through his 
granddaughters. The model used is sometimes called the sire-maternal grandsire 
model (see appendix 6). However, be aware that in this model we still assume that 
there are only additive effects, i.e. the genes of the male act in the same way 
whether they occur in the father or in the maternal grandsire. This is not the case 
in the “sire-maternal grandsire model” used when one assumes maternal effects 
(see below).  
 
If the dams have several offspring with the same sire the dam can be included in 
the model instead of the maternal grandsire. The model then used is a sire-dam 
model.  

  

Models with maternal effects 
Some traits may be influenced by maternal effects, which means that the mother 
has an impact on the performance of her offspring that depends on her ability to 
provide a suitable environment for them (mothering ability). This may the case 
for traits like early growth, survival and weaning weight of pigs, lambs and beef 
cattle, as well as behaviour characteristics in many species. These maternal effects 
are strictly environmental for the offspring, but with regard to the mother the 
mothering ability can be partly genetic and partly environmental. The mothering 
ability can be considered to be an unobservable phenotype of the mother, the ef-
fect of which is only seen in the offspring.  
 
The mixed model methodology can handle this situation by extending the animal 
model to include: 

Phenotypic observation  =  mean + systematic environmental effects  
+ breeding value of animal (often called direct genetic effect) 
+ breeding value of the dam in providing a suitable environment (maternal  

genetic effect) 
+ permanent environmental effect of the dam (maternal non-genetic effect) 
+ residual 
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Note that the genes for mothering ability exist in both males and females, how-
ever, the genes are only expressed in females, and not until they get progeny of 
their own. The assumption is also that there can be a correlation between the di-
rect genetic effect and the maternal genetic effect. For instance, if a negative di-
rect-maternal correlation for growth exists, that means that animals that have 
good genes for their own growth have bad genes for supporting the growth of 
their offspring.  
 
Another way of estimating maternal genetic effects is to apply a sire-maternal 
grandsire model, where the effect of the maternal grandsire now includes both 
the direct effect of genes, and the maternal effect of the genes.  
 
Phenotypic observation = mean + systematic environmental effects 
+ effect of sire (direct effect of genes) 
+ effect of maternal grandsire (direct effect and maternal effect) 
+ residual 
 
Note the difference between this model and the sire-maternal grandsire model for 
purely additive direct effects described in appendix 6.  
 
 

Models including non-additive genetic components 
The models that we have discussed so far have all exclusively dealt with additive 
genetic effects. For some traits, however, the contribution of non-additive genetic 
effects, like dominance, might be significant. Theoretically, the Hendersson 
mixed model equations (MME) can handle a situation where we have both addi-
tive and dominance genetic effects (by also including dominance relationships), 
and thus predict both the additive genetic effect and the dominance effect of each 
individual. In practice, however, the application of such models has been limited 
due to lack of reliable genetic parameters, and also because dominance effects are 
often highly confounded with effects due to common environment between close 
relatives. 
 
 

Multiple trait models 
Genetic evaluation of an animal mostly includes several traits, and as you could 
see in the section on selection index theory, we often want to predict a breeding 
value (index) that combines those traits. This is possible to achieve also when the 
mixed model methodology is used for the genetic evaluation. Moreover, including 
several traits in the same analysis means that the genetic and phenotypic correla-
tions between traits are considered, and that correlated traits thus add information 
to each other. This usually increases the accuracy of the evaluations. 
  
In multiple-trait BLUP the mixed model equations are extended in proportion to 
the number of traits included. If we consider a multi-trait analysis including two 
traits the mixed models in matrix form for each trait will be: 
 
 Trait 1:  y1  = X1 b1 + Z1 a1 + e1  

 Trait 2:  y2  = X2 b2 + Z2 a2 + e2
  



The model for a two-trait analysis can thus be written as: 
 

Compendium Genetic Evaluation by E. Strandberg and B. Malmfors 
Version 2006-06-14 

35

1

2

+1 1 1 1 1

2 2 2 2 2
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= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

y X 0 b Z 0 a e
y 0 X b 0 Z a e

 

 
and the Hendersson Mixed Model Equations (MME) [37], will be expanded ac-
cordingly, i.e. the number of equations will be doubled compared to single-trait 
analysis. For each trait included in the analysis we will also need to incorporate 
the respective variances for random effects ( 2

uσ ), residuals ( 2
eσ ), as well as the 

covariances between the traits.  
 
The number of equations to be solved can be very large when multi-trait BLUP is 
used, especially if many traits are included. This may result in computational 
problems and a high computational cost. However, with increased computer ca-
pacity and computational “tricks” such problems are becoming less important. 
Iterative methods, such as iteration on data, have made it possible to solve ex-
tremely large equation systems. 
 
Another problem with muilti-trait analysis can be lack of reliable estimates of ge-
netic and phenotypic correlations between the traits, but this problem is the same 
whether selection index theory or the BLUP procedure is used.  
 
What we get from the multi-trait mixed model analysis are predictions of breed-
ing values for each trait included in the analysis (which are not the same as those 
we would have got in separate analyses ignoring correlations between traits). To 
get a composite breeding value (Total Merit Index) we weigh the multi-trait 
BLUP values by their respective economic weights: 
 

I = v1 I1 + v2 I2 + …..... + vm Im        

where I1 to Im are predicted breeding values from a multiple trait model. This is 
actually the same procedure as we use when calculating a selection index based 
on sub-indexes. 
 
 

Repeated records model 
Sometimes the same trait is measured repeatedly on the same animal. Milk yield 
in successive lactations and litter size in successive pregnancies are some exam-
ples. Repeated records on the same animal show resemblance not only for genetic 
reasons, but also because they often are influenced by permanent environmental 
factors. The mixed model with repeated records may thus look like: 
 
 y = Xb + Za + Zp + e 
 
where p is a vector of permanent environmental effects (specific for each animal), 
and the other elements are the same as in an ordinary single-trait analysis. The 
assumption in this model is that, say, milk yield in first and second lactation is 
genetically the same trait. If this is not (at least approximately) true one should 
use the multiple trait animal model instead. 
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BLUP breeding values are useful for ranking and selection 
BLUP breeding values, especially from the animal model including relationships, 
are useful tools in selection. Selection on BLUP breeding values maximizes the 
probability for correct ranking of breeding animals and selection on them maxi-
mizes genetic gain from one generation to another. There are many factors that 
contribute to this: 

 The animal model makes full use of information from all relatives, which in-
creases accuracy (precision).  

 The breeding values are adjusted for systematic environmental effects in an 
optimal way. This means that animals can also be compared across herds, age 
classes etc, assuming the data is connected.  

 The procedure is flexible, various practical situations can be handled.  

 Non-random mating can be accounted for.  

 Several traits can be included 

 Bias due to culling (e.g., between 1st and 2nd lactations) and selection (over 
generations) is accounted for, assuming that also non-selected animals’ data 
are included in the analysis. 

 
It should, however, be noted that the genetic evaluation is based on phenotypic 
observations, and that regardless of how splendid the BLUP procedure may be, it 
cannot compensate for bad data. So a good recording is necessary for a reliable 
genetic evaluation and subsequent genetic gain. It should also not be forgotten 
that BLUP (as well as selection index) assumes that the genetic parameters used 
are the true ones. In practice that means that they should be close to the true pa-
rameters. 
 
Something that should be noticed is the potential risk for increased inbreeding 
when selection is based on breeding values including information on all relatives. 
The probability that several family members are selected jointly is increased, 
which may result in increased inbreeding. To avoid this, and to optimize long-
term selection response, selection on BLUP breeding values might be combined 
with some restriction on average relationship of the selected animals.   
 
A useful side effect of BLUP genetic evaluation is that it gives estimates of the 
realized genetic trend. This is achieved by comparing BLUP breeding values of 
animals born in different years, assuming there are connections between years 
through successive time overlapping or through relationships. We already did a 
simple estimation of genetic trend in the small animal model example starting on 
page 29.  
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