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Appendix 1.  Derivation of selection index equations 

We will now derive the selection index equations that we have stated to be  
  
 Pb = Gv [1] 
 
We start by defining the breeding goal: 
 
 T = v1A1 + v2A2 +…+ vmAm = v’a [2] 
 
where v is the vector of economic weights and a is the vector of true breeding 
values with variance-covariance matrix C. The index is defined as: 
 
  [3] xb'...ˆ

2211 =+++== nn XbXbXbIT
 
where b is the sought index weights and x is the vector of phenotypic measures 
with variance-covariance matrix P. We have also previously defined the matrix G 
which contains the genetic covariances between the measures in the index and the 
breeding goal traits. 
 
Now, we want to have an index that as closely as possible describes the breeding 
goal. This can be expressed as that we want to minimize the squared difference 
between I and T, E(T-I)2 (similar approach as in least squares). Because both T 
and I have expectations zero, this squared difference is the same as the variance of 
this difference, which actually is the residual variance from a model T = I + e = I 
+ (T-I). So, if we look closer at this squared difference: 
 
 (T-I)2 = (v’a-b’x)2 = v’var(a)v – 2b’cov(x,a)v + b’var(x)b 
 = v’Cv –2b’Gv + b’Pb [4] 
 
The way to minimize this expression is to differentiate with respect to the selec-
tion index coefficients, b, and to set the resulting equation to zero. 
 

 0PbGv0
b

=+−=
∂
−∂ 22)( 2IT

 [5] 

 
which after rearrangement leads to the expression we have already described in [1
],  Pb=Gv.  
 
 
 
Matrix algebra needed for proof 
In order to follow the proof just given you need to also know the rules for differ-
entiation of matrices, which actually are very similar to those for scalars. We will 
just briefly mention the rules used here.  
 
First of all, the derivative of v’Cv with respect to b is a vector of zeros, because 
v’Cv is not a function of b. This is the same as when you have scalars. 
 

Appendices to Compendium Genetic Evaluation by E. Strandberg and B. Malmfors. 
Version 2006-06-14 

1



If we have a multiplication of two vectors k’y and we want to differentiate with 
respect to y then: 
 

 k
y
yk

=
∂

∂ )'(
 [6] 

 
You recognize this from the differentiation rules for scalars where d(ky)/dy = k. 
The only different thing with matrices is that you need to keep in mind the dimen-
sions of the matrices. If you differentiate with respect to a column vector y you 
expect the result to be a vector of the same size and form, i.e. k’ turns into k. 
 
If you have a ”quadratic form”, e.g. y’Ay, which corresponds to Ay2 in scalar 
form, the derivative becomes: 
 

 Ay
y
Ayy 2)'(

=
∂

∂
 [7] 

 
which corresponds to the scalar result d(Ay2)/dy = 2Ay. Again note that the result 
Ay is a vector of the same form as y. 
 
 
Properties of selection index 
The proof given was set up to give the selection index the property of minimized 
expected squared difference (E(T-I)2) between the true and the predicted breed-
ing value, or minimized residual variance from the model T = I + e. Minimizing 
the residual variance is the same as maximizing the R2-value of that model. The 
R2 is identical to the (rTI)2, the squared value of the correlation between the true 
annd the predicted breeding value. So by minimizing we have also maximized 
the rTI. 
 
Two other properties that hold for selection index is that it: 

♦ maximizes the probability of correct ranking between any two individuals 

♦ maximizes the genetic gain for each round of selection. 
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Appendix 2. Derivation of variance of index and breeding 
goal  

You probably already know how to calculate the variance of a variable multiplied 
by a constant, e.g. the variance of kx, where x is a variable with variance 2

xσ , is 
2 2

xk σ . Now, if you have vectors to deal with instead this is how it works. 
 
Let’s look at the vector multiplication b’x, where b’ is a row vector of index 
weights (constants) and x is a column vector of phenotypic deviations. We have 
already defined the variance of x to be P. Now then, what is the variance of b’x? 
From the way it works for scalars (ordinary numbers) one might guess that the 
answer should be something like b’2 var(x), however, that is not correct. The 
correct answer is: 
 
  [8] var( ) var( )= =b'x b' x b b'Pb
 
i.e. instead of squaring the b-values, the b-vectors are on both sides of the vari-
ance matrix. Let’s take the smallest possible (but yet meaningful) example to see 
how it works. Assume you have to phenotypic deviations, and thus two index 
weights: 
 
  1 1 2 2var( )b X b X+
 

Using the rules for taking variances (see chapter on Statistical Concepts) we get: 
 
  [9] 2

1 1 1 2 1 2 2var( ) 2 cov( , ) var( )b X b b X X b X+ + 2

 

Let’s then have a look at what b’Pb really means: 
 

 [ ]
2

11 1, 2
1 2 2

21, 2 2

X X X

X X X

b
b b

b
σ σ

σ σ
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 

 

and if we carry the first multiplication through we get: 
 

 12 2
1 1 2 1, 2 1 1, 2 2 2

2
X X X X X X

b
b b b b

b
σ σ σ σ

⎡ ⎤
⎡ ⎤+ + ⎢ ⎥⎣ ⎦

⎣ ⎦
 

 

and then finally: 
 
 2 2 2 2

1 1 1 2 1, 2 1 2 1, 2 2 2X X X X Xb b b b b b Xσ σ σ+ + + σ  
 
Now, this is identical to equation [9] which was what we wanted!  
 

Similarly, we can show that the variance of v’a is v’Cv, where C is var(a). 
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Appendix 3. Henderson’s mixed model equations to get  
Best Linear Unbiased Predictions (BLUP) 

Our aim is to estimate fixed effects and predict breeding values from the model  
 
 eZuXby ++=  
 
Before we go into the world of Henderson, a few words about estimation vs. 
prediction. The verb ”estimate” is used for levels of fixed effects whereas the 
verb ”predict” is used for levels of random effects. Many animal breeders use the 
term ”estimated breeding value”, EBV, a term that would probably make a real 
statistician shudder. Statisticians would argue that a random variable cannot be 
estimated, because it is not fixed over repeated sampling. What (at least some) 
statisticians may agree upon is that we make inferences about the realized values 
of a random variable given the data, i.e. E(u|y). To many animal breeders this is 
quibbling, they are only interested in knowing which animals are best. The ad-
vantage of defining animals as random is that we can use prior knowledge about 
the variance-covariance structure to improve our estimates (sorry, predictions). If 
we from previous experience know, e.g., the heritability and the relationships 
among animals, it makes intuitive sense to use this information in order to do a 
better job in getting the breeding values. 
 
So let’s move to the real objective here, what do we want to do?1 The objective is 
often expressed as that we want to predict the function: 
 
 K’b + M’u [10] 
 
which is called the predictand. This is a way of expressing the problem is such a 
general way that it becomes almost impossible to understand. What it basically 
means is that you want to predict any linear function of the fixed and random 
effects. So, before we continue with our quest, we will give some examples of K 
and M to clarify this. 
 
First, a very common way of expressing K and M is to say that we want breeding 
values for all animals but we do not care about the fixed effects. This would im-
ply that (if there are r animals in the analysis) K’ is a rxf matrix of zeros and M’ 
is a rxr matrix with ones on the diagonal: 
 

  [11] 
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The end result is a rx1 vector with the breeding values. Another example might 
be where one has a model where one of the fixed effects contain a genetic level 
effect, e.g., a breed or country effect. Then one could express the breeding values  
 
for a certain level of that effect. Then K’b + M’u might look something like:  

                                                      
1 The following description is partly based on notes from Larry Schaeffer, e.g. (Schaeffer, 
1985) 
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  [12] 
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Now, is this confusing? Don’t worry! As we shall see later, the solutions from 
MME will work regardless of what K and M we choose, and that is the beauty of 
it. Think about the opposite situation. If the solutions were dependent on K and 
M, we might have to redo the analysis just because we now want to include the 
fixed effects of breed in our published breeding value. Thankfully, we can do that 
just by using the estimates of the fixed breed effects directly, as we shall see. 
 
OK, so let’s start over again: we want to predict K’b + M’u. To get the best pre-
dictor of this we need to know the distribution of the random variable and all 
moments (the first moment is the mean, the second the variance, but higher order 
moments exist as well) of the distribution. Then the best predictor (BP) given 
the data is: 

BP: Best Pre-
dictor 

 E(K’b+M’u|y) [13] 
 
which is best in the meaning that it has the smallest mean squared error (squared 
difference between predictor and true value) of all predictors.  
 
This overall best predictor may not be possible to get, because we may not know 
all moments of the distributions. If we restrict the predictor to be a linear function 
of the data, it turns out that we only need to know the mean and the variance of 
the random variable. Let us assume that the first moment is Xb and the second 
Var(y)=V, then the best linear predictor (BLP) is: 

BLP: Best Linear 
Predictor 

 
 E(K’b+M’u) = K’b + C’V-1(y-Xb) [14] 

where 

 C’ = Cov(K’b+M’u, y) [15] 
 
C’ is the covariance between the predictor and the data. The expression   C’V-1 
actually corresponds to a set of ordinary scalar regression coefficients but ex-
pressed in matrix terms. The expression describes the regression of the predictor 
on the data adjusted for fixed effects.  
 
There is a resemblance here to what we did in the selection index theory where 
the index was calculated as: b’x= (P-1G)’x = G’P-1x (if only one trait in goal, 
m=1, v disappears, G is nx1, and x is the vector of phenotypic deviations). (Note 
by the way that the b in the selection index situation (vector of index weights) 
does not mean the same as the b in the mixed model context (vector of fixed ef-
fects)). In the table on the next page you can see the similarities between the se-
lection index and the BLP outlined in eq. [14]: 
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 Selection 
index 

BLP 
(eq. [14]) 

Variance-covariance of phenotypic measures P V 
Covariance between phenotypic measures and 
what we want to predict (breeding goal)  G C 

Phenotypic measures x y-Xb 
Predictor G’P-1x C’V-1(y-Xb) 
 

The regression coefficients are then (in both cases) multiplied by the observations 
adjusted for the mean and the other fixed effects (y-Xb). Note that we assume that 
we know the true values of the fixed effects (b in [14]). 
 
What if we do not know the true values of the fixed effects? Then we have to 
make sure that the predictor becomes unbiased in some other way. The best  
linear unbiased predictor (BLUP) is: 

BLUP: Best Linear 
Unbiased Predictor 

 

  [16] )bX-(yVC  bK ˆˆ 1−′+

where: 

  [17] yVXXVXb 11 ')'(ˆ −−−=
 
The only difference is that we have replaced the true fixed effects by their gener-
alized least-squares estimates, which give an unbiased estimate of the fixed ef-
fects.  
 
Now, [16] is not a very convenient expression because C seems to be a function 
of both K and M (see [15]). Also, the inverse of V is needed, and this matrix is of 
order N, the number of observations. This matrix would quickly become impossi-
ble to invert even in fairly moderate size animal breeding data. So, we shall try to 
remove these drawbacks. 
 
We want to find a function of the data, the predictor L’y, which predicts the pre-
dictand K’b + M’u with minimum mean squared error, also making sure that the 
predictor is unbiased, i.e. that the expectation of the predictor is equal to the ex-
pectation of the predictand. This can be expressed in algebra as: 
 
 E(L’y) = L’Xb [18] 

 E(K’b + M’u) = K’b [19] 
 
because E(y)=Xb, E(b)=b, and E(u)=0. To get unbiasedness we need: 
 
 L’X = K’ [20] 
or 
 L’X - K’ = 0 [21] 
 
Note that L’ is of order rxN and K’ is of order rxf.  
 
Now, the next step is to describe the mean squared error (MSE). Generally, MSE 
= (bias)2 + (Prediction error variance). However, because we have unbiasedness 
MSE becomes equal to the prediction error variance. 

 PEV = Var(K’b+M’u-L’y)  
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 = Var(M’u-L’y)   
 = M’Var(u)M + L’Var(y)L –M’Cov(u,y)L –L’Cov(y,u)M 
 = M’GM + L’VL –M’GZ’L – L’ZGM [22] 
 
Note that PEV is a rxr matrix, containing prediction error variances on the diago-
nal for each breeding value, and prediction error covariances on the off-diagonal 
positions (describing how the prediction error of one breeding value covaries with 
that of another breeding value). 
 
There are some results hidden in [22] that need be explained before we go on. 
When we defined the model we should also have defined the expectation and 
variance of all components of the model. We have defined: 
 

  [23] ⎥
⎦

⎤
⎢
⎣

⎡
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
R0
0G

e
u

Var

 
and we had already defined Var(y) = V. With the definitions in [23] we can calcu-
late  

Var(y) = V = Var(Xb + Zu +e) = Var(Zu +e)  
= ZVar(u)Z’+ Var(e) + ZCov(u,e) + Cov(e,u)Z’ 
= ZGZ’ + R + 0 + 0 

 
because the covariance between u and e is zero (from [23]). Similarly, the 
covariance between y and u becomes: 
 
 Cov(y,u) = Cov(Xb+Zu+e,u) = ZVar(u) = ZG [24] 
  
 Cov(u,y) = (ZG)’ = G’Z’ = GZ’ [25] 
 
Now we want to minimize the PEV still keeping the unbiasedness. This we can 
do by adding a relation containing so-called LaGrange multipliers which force 
(L’X-K’) to be zero:  

 F = PEV + (L’X-K’)Φ [26] 
 
Note that because PEV is a rxr matrix and (L’X-K’) is a rxf matrix, Φ must be a 
fxr matrix, otherwise they won’t add properly. 
 
So, now we want to find L and Φ such that F is minimized. This minimization is 
done by differentiating F with respect to both L and Φ and setting them to zero: 
 

 0XZGMVL
L
F

=Φ+−=
∂
∂ 22  [27] 

 

 0KLXF
=−=

Φ∂
∂ '  [28] 

 
Becuase L is of order Nxr the resulting matrix of [27] is also Nxr, and the order 
of [28] is fxr.  
 
To simplify calculations later we will set θ=0.5Φ, then the first derivative [27] 
can be written as: 
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 VL = ZGM -Xθ [29] 
 
We then solve for L as  
 
 V-1VL = L = V-1ZGM –V-1Xθ [30] 
 
Substituting this for L into the second derivative [28], then we can solve for θ as 
follows: 
 
 X’(V-1ZGM –V-1Xθ) – K =  0 
 
 X’V-1Xθ = X’V-1ZGM – K 
 
 θ = (X’V-1X)-( X’V-1ZGM – K) [31] 
 
Now, we can set this into the equation for L [30]: 
 
 L = V-1ZGM –V-1X(X’V-1X)-( X’V-1ZGM – K) 
 
 = V-1ZGM –V-1X(X’V-1X)- X’V-1ZGM + V-1X(X’V-1X)-K) [32] 
 
If we transpose this to get L’: 
 
L’ =M’GZ’V-1 + K’(X’V-1X)-X’V-1 – M’GZ’V-1X(X’V-1X)-X’V-1 [33] 
 
and  
 
L’y =M’GZ’V-1y+ K’(X’V-1X)-X’V-1y– M’GZ’V-1X(X’V-1X)-X’V-1y [34] 
 
Now, remember that the GLS estimator of b is (from [17]: 
 
  yVXXVXb 11 ')'(ˆ −−−=
 
We can find this expression in [34]: 
 
L’y  =M’GZ’V-1y+ K’(X’V-1X)-X’V-1y – M’GZ’V-1X(X’V-1X)-X’V-1y [35] 
 
 = M’GZ’V-1y+ K’ – M’GZ’Vb̂ -1X  b̂
 
We can also see another common part and simplify even more: 
 
L’y  = M’GZ’V-1y+ K’ – M’GZ’Vb̂ -1X  b̂
 
 =  )ˆ(''ˆ' bXyVGZMbK 1 −+ −

 
which then is the BLUP of K’b +M’u. If we let K’=0 and M’=I, then the predic-
tand becomes u and  
 
 L’y = û =   [36] )ˆ(' bXyVGZ 1 −−

 
This means that the predictor of K’b +M’u is: 
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    [37] [ ] ⎥
⎦

⎤
⎢
⎣

⎡
u
b

MK
ˆ

ˆ
''

 
This is good news in that respect that regardless of what K’ and M’ are, we can 
always use the same estimator b and predictor û. However, [ˆ 35] still contains the 
inverse of V, and this is very large and difficult to invert. 
 
To get rid of V-1 we have to go back to the equations [29] and [28], which con-
tained the derivatives set to zero: 
 
 VL = ZGM -Xθ  [29] 
 
 X’L – K = 0  [28] 
 
and write this in matrix form: 
 

   [38] ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
K

ZGML
0X
XV

θ'
 
and we replace V by ZGZ’+R which makes the first equation become: 
 
 
 (ZGZ’+R)L + Xθ = ZGM   
 
 = (ZGZ’+R)L + Xθ = ZGM  [39] 
 
 ⇒ RL + ZG(Z’L – M) + Xθ = 0 
 
 = RL + ZS + Xθ = 0  [40] 
 
In the last step we just set S = G(Z’L – M). Now we solve for M 
 
 M = Z’L –G-1S   [41] 
 
and we have a new equation system: 
 

   [42] 
⎥
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00X
ZXR

1

θ
'
'

 
Now, we solve for L in the first equation: 

 RL + Xθ + ZS = 0  [43] 
 
 L = -R-1Xθ –R-1ZS  [44] 
 
Note, that we can write L’ as: 

 L’ = - θ’X’R-1 - S’Z’R-1  [45] 
 
or expressed in matrix algebra: 
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 L’ =   [46] [ ] ⎥
⎦

⎤
⎢
⎣

⎡
−

−

−

1

1

RZ
RX

S
'
'

''θ

 
and we put that into the two remaining equations: 
 
 -X’R-1Xθ –X’R-1ZS = K  [47] 
 
 -Z’R-1Xθ –Z’R-1ZS – G-1S = M  [48] 
 
which gives in matrix form again: 
 

⎥
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⎦
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  [49] 

 

Now, we can find a solution to this equation system as: 
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  [50] 

 

or if we take the transpose: 
 

[ ] [ ]
−

−−−
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⎡

+
−= 1

1
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''''θ  [51] 

 

Now, we put [56] together with [61]: 
 

[ ]
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We can see that this equation system contains a part [K’ M’] times another part 
that looks like a solution to a equations system: an inverse times a right-hand 

side. If we call this solution , it would come from an equation system 

looking like: 

⎥
⎦

⎤
⎢
⎣

⎡
u
b
ˆ

ˆ

 

  [53]  ⎥
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⎥
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and it means that the predictor of K’b + M’u is , where b and 

come from [
uMbK ˆ'ˆ' + ˆ

û 53]. 
 
Equation [53] is called Henderson’s Mixed Model Equations or MME. Now, 
we need to take the inverse of the left-hand side coefficient matrix to get the solu-
tion. This matrix is of order (f+r)x(f+r), which is smaller than the number of 
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observations. However, you might argue that R-1 is still of the same order as 
number of observations, and now you need that inverse instead of V-1. The good 
news is that we can usually assume that R is diagonal, i.e. can be written I , 
and is therefore easily inverted. This was actually what we assumed in the main 
text, and that is why those equations looked even simpler. We will do this simpli-
fication here too.  

2
eσ

 

Assume that R = I , and thus R2
eσ -1 = I 2

eσ
1

. Also assume that G = A  and 

therefore G

2
uσ

-1 = A-1
2

1

uσ
.  Then [53] becomes: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+ −
2

2

222

22

1'

1'

ˆ

ˆ
11'1'

1'1'

e

e

uee

ee

σ

σ

σσσ

σσ

yZ

yX

u
b

AZZXZ

ZXXX

1
 [54] 

 
 
Now, we multiply both sides with  and get the equations: 2

eσ
 
 

ˆ' '
' ' 'ˆλ−

⎡ ⎤⎡ ⎤
=⎢ ⎥⎢ ⎥+⎣ ⎦ ⎣ ⎦

1

X X X Z X '⎡ ⎤
⎢ ⎥
⎣ ⎦

yb
Z X Z Z A Z yu

  [55] 

 

where 
2

2
e

u

σλ
σ

= . Equation [55] is the same as equation [37] in the main text. 
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Appendix 4. Iterative solutions to the mixed model  
equations  

The Jacobi and Gauss-Seidel methods2

One of the simplest iterative methods used to solve linear equation systems is the 
Jacobi method and the slight variation called Gauss-Seidel. Let’s try to depict the 
methods in a graphical way. The mixed model equations can be described as be-
low where the coefficient matrix is shaded, b is the vector of unknown solutions, 
and the right-hand side is abbreviated rhs: 

=b

r

h

s

 
 
Now, we can split the left-hand side coefficient matrix (C) up into two parts, the 
off-diagonal and the diagonal parts: 

=b

r

h

s
b+

 
where the white space in the coefficient matrix indicates zeroes. Now we can 
move the left-most part to the right-hand side of the equation: 
 

= b

r

h

s
b -

 
 
 
 

                                                      
2  Information in this appendix is based on several sources, e.g. (Misztal, 1999) 
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In the next step we divide each element of the right-hand side (which is a vector) 
with the corresponding diagonal element: 
 

= b

r

h

s
b -

 
and we have still not done anything illegal. Now comes the trick that makes this 
into an iterative equation system: we let the b on the right-hand side contain the 
“old” solutions and the  b on the left-hand side the “new” solutions. For the first 
iteration we start out with either some “guesses” of solution (e.g. solutions for 
breeding values from a previous run) or just zeroes. After a certain number of 
iterations the difference (bnew – bold) will be very small and the system is said to 
have converged.  
 
 
Example of Jacobi and Gauss-Seidel 
Assume we have a model with two fixed effects, a and b, each with two levels. 
The data (10 observations) and the structure has led to the following equation 
system (in matrix terms it can be summarized as X’X b=X’y or simpler Cb=rhs): 
 

  

1

2

1

2

6 0 1 5 60
0 4 2 2 30
1 2 3 0 40
5 2 0 7 50

a
a
b
b

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 
with solutions (if we set b2 to zero): 
 

  

8.6364
3.4091
8.1818

0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 
Now, if we start solving the equation system using Jacobi and we start with ze-
roes for all values in the b-vector we get: 
 

  [56] 

1 2 1 2

2 1 1 2

1 1 2 2

2

(60 0 1 5 ) / 6 60 / 6 10.0
(30 0 2 2 ) / 4 30 / 4 7.5
(40 1 2 0 ) / 3 40 / 3 13.333
0

a a b b
a a b b
b a a b
b

= − − − = =
= − − − = =
= − − − = =
=
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What exactly are we doing here? Well, the principle is actually quite simple. If 
we look at the first equation (the row corresponding to a1), we take the right-hand 
side (which is the sum of 6 observations=60) and adjust it for the other effects in 
the model (apart from the 6 a1, it consisted of one b1 and 5 b2) and then we divide 
by the number of a1 in that sum. And that principle holds throughout.  
 
Now, the results from the first round of iteration, does not look much like what 
we know to be the correct answer. On the other hand we started out with really 
wild guesses. Let’s take it another round: 
 

  

1

2

1

2

(60 13.333) / 6 46.667 / 6 7.777
(30 2 13.333) / 4 3.3334 / 4 0.8333
(40 1 10 2 7.5) / 3 15 / 3 5.0
0

a
a
b
b

= − = =
= − × = =
= − × − × = =
=

 
Note that we are already fairly close for at least a1. Note also that we in the calcu-
lation of e.g. b1 use the value from the previous round for a1 (10.0) although we 
have just recently calculated a new value (7.777) for that effect (as you will see 
later, if we had used the new value it would have been a Gauss-Seidel iteration 
instead). Now, let’s look at the result from some more rounds: 
 

  

9.166666667 8.302469136 8.842592593 8.506515775
5 2.407407407 4.027777778 3.019547325

, , ,
10.18518519 6.944444444 8.96090535 7.700617284
0 0 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  

8.716563786 8.585867246 8.667552583 8.616726151
3.649691358 3.257601738 3.50265775 3.350178453

, , ,
8.484796525 7.994684499 8.299643093 8.109043972
0 0 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 
As you see it goes a bit up and down, however, after a while it stabilized and after 
20 rounds the results are: 
 

  

8.636188968
3.408566905
8.181170882
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 
i.e. rather close to the exact values.  
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The Gauss-Seidel method is very similar to Jacobi, the only difference is that as 
soon a new solution is calculated it is used directly (in Jacobi we waited until all 
estimates of the round were computed). For Gauss-Seidel the first round of com-
putations (given in eq. [56]) would instead become: 
 

1 2 1 2

2 1 1 2

1 2

2

(60 0 1 5 ) / 6 60 / 6 10.0
(30 0 2 2 ) / 4 30 / 4 7.5
(40 10 2 7.5 0 ) / 3 15 / 3 5
0

a a b b
a a b b
b b
b

= − − − = =
= − − − = =
= − − × − = =
=

  

… and so on. 
 
In some texts you may find a description of the Jacobi algorithm that looks some-
thing like (if we describe the equation system as Cb=rhs):  
 

1,( 1) ( )

m
n

i ij
j mn n

i i
ii

rhs c b
b b

c
=+

−
= +

∑ j

)

)

  [57] 

 
In [57], when j=i, is deducted from the rhs/n

ii i iic b c i /cii (even though it shouldn’t 
be) and therefore we add this again. Then this algorithm becomes the same as that 
described in graphic form previously. The algorithm in [57] is easier to program 
than that shown in the numeric example above. The same algorithm can be used 
automatically for Gauss-Seidel, if you have only one array for the solutions, and 
all solutions from 1 up to (i-1) are from round (n+1), and solutions from i to m are 
from round n.  
 
One can show that the Gauss-Seidel algorithm is actually an iteration on: 
 

( ) ( ) (+ −= + −n 1 1 nb L D rhs Ub   [58] 
 
where L and U are matrices containing the lower and upper off-diagonals of the 
coefficent matrix C, respectively, and D is a matrix containing the diagonals of 
C. The Jacobi algorithm, however, is: 
 

( ) ( ( )+ −= − +n 1 1 nb D rhs L U b   [59] 
 
Because  is a better approximation of C( )−+ 1L D -1 (which is the true inverse) 
than D-1 is, in general we would expect Gauss-Seidel to perform better than 
Jacobi. 
 
There is a variety of the Gauss-Seidel called Successive Overrelaxation (SOR) 
which may give faster convergence: 
 

1,( 1) ( )

m
n

i i
j mn n

i i
ii

rhs c b
b b k

c
=+

−
= +

∑ j j

  [60] 

where k is the relaxation factor (a value between 1 and 2 is usually chosen). 
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Appendix 5. Setting up the inverse of the relationship 
matrix directly 

One problem with including the relationship matrix A in mixed linear models is 
that it can become very large, especially in animal models, where each individual 
is included. Even if it is possible to set up A using the tabular method described 
earlier, the problem comes when you have to invert it. The good news is that 
there is a method of getting A-1 directly from a pedigree list of the individuals. 
For this method to work you need to include all animals in the vector of breeding 
values (a), also those that have no information but give rise to the relationships, 
the so-called base population animals. There are ways of setting up A-1 directly 
both when ignoring inbreeding and taking inbreeding into account, but the former 
method is much simpler. 
 
 
Setting up A-1  ignoring inbreeding 
For the original description see (Henderson, 1975a, 1975b, Henderson, 1976).  
 
The method works as follows. We assume that we have an animal model and that 
we for each animal have a list with its sire and dam (0 if missing). For simplicity, 
we will also assume that all individuals have identity number going from 1 up to 
number of animals, n (if that is not the case from the beginning they can be re-
coded). This means that A is of size nxn. Note that n includes the base population 
animals. 
 
Read the pedigree list one individual at a time. For each individual add values to 
the positions of A-1 according to the rules in Table 1. When all animals have been 
processed the A-1 is completed. 
 
Table 1. Coefficents to be added to A-1 in an animal model with pedigree infor-
mation on sire and dam (non-inbred animals) 

Identity known for: Number to be added to position (i=individual) 

both sire (s) and dam (d) 2 to (i,i) 
-1 to (i,s), (s,i), (i,d) and (d,i) 
1/2  to (s,s), (d,d), (s,d) and (d,s) 

only one parent (p) 4/3 to (i,i)  
-2/3 to (i,p) and (p,i) 
1/3 to (p,p) 

none of the parents 1 to (i,i) 
 
The method can also be used for a sire model, where the pedigree information 
that can be included only comes from the male side (i.e. sire of sire and maternal 
grand sire of sire) but then the rules in Table 2 must be used instead. Otherwise 
the procedure is identical. 

Appendices to Compendium Genetic Evaluation by E. Strandberg and B. Malmfors. 
Version 2006-06-14 

16



Table 2. Coefficents to be added to A-1 in a sire model with pedigree information 
on sire of sire and maternal grandsire of sire (non-inbred animals) 
Identity known for: Number to be added to position (i=individual) 

both sire (s) and maternal 
grandsire (mgs) 

16/11 to (i,i) 
-8/11 to (i,s), (s,i),  
4/11  to (s,s) 
-4/11 to (i,mgs) and (mgs,i) 
2/11 to (s,mgs) and (mgs,s) 
1/11  to (mgs,mgs) 

sire (s) but not mgs 4/3 to (i,i)  
-2/3 to (i,s) and (s,i) 
1/3 to (s,s) 

mgs but not sire 16/15 to (i,i) 
-4/15 to (i,mgs) and (mgs,i) 
1/15 to (mgs,mgs) 

none of the parents 1 to (i,i) 

 
 
 
Setting up A-1 taking inbreeding into account 
There is also a method for setting up A-1 directly when the animals (parents) are 
inbred but then animals have to be listed in time order. For more details see 
(Quaas, 1976). 
 
 
Implication: you get PBVs also for animals without observations 
The way of setting up A-1 directly indicates that it is possible to get breeding val-
ues also for animals that do not have any phenotypic information of their own. 
That is exactly what happens for the base populations animals, those animals that 
are included so that the A-1 can be set up directly. On the diagonal of the OLS 
coefficient matrix (left hand side) for such an animal there is just a zero. Simi-
larly, on the right hand side (Z’y) corresponding to such an animal, there is also a 
zero. However, when the A-1 is added to create the MME the information from 
their relatives is included and their predicted breeding values are based on the 
relatives’ phenotypic information.  
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Appendix 6. Sire models 

In the simplest sire model, we assume that each sire is mated to a number of fe-
males and that each female only has one offspring. A typical example of such a 
situation is the progeny testing of young dairy bulls for milk production. We can 
write the model as: 
 
  = + +y Xb Zs e
 
and the expectations of the random effects are: 
 
 s ∼ 2( , )sσND 0 A  
 
 e ∼ 2( , )eσND 0 I  
 
where 
 
 2 2 20.25 0.25 2

s P Ahσ σ σ= =  
 
 2 2 2 2(1 0.25 ) 0.75e Ph 2

A Eσ σ σ= − = +σ

´⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 
 
The MME expressed in matrix language look basically the same as for the animal 
model: 
 

 
´ ´
´ ´ ´λ−

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

1

X X X Z b X y
Z X Z Z A s Z y

 

 

but here 
2 2

2 2

4e

s

h
h

σλ
σ

−
= =  

 
 
Let us look a little closer at the contents of the random part Z’Z (the fixed part is 
exactly the same as for the animal model): 
 

 

.1

.2

.

0 . . .
0 .
. .
. .
0 . . 0

.
0

s

n
n

n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
The diagonal contains the number of daughters for each sire. Correspondingly the 
right hand side of the random part contains the sum of observations for each sire. 
 
The relationship matrix in a sire model is based on relationships due to common 
males in the pedigree, i.e. the fathers and the maternal grandfathers of the sires in 
the model (see Appendix 5). 
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Example of sire model 
Let’s look at a small example to explain how the sire model works. In the table 
below we have observations of 305-day milk production from daughters of 4 
bulls, spread over two herds. The entries in the table are the sum of the observa-
tions with number of observations (daughters) in parentheses, together with the 
progeny average for each sire, and the corresponding rank.   
 
 Herd (hi)   Progeny  
Sire (sj)  1 2 Sum average  Rank 
1   89 400  (10) 228 500 (25) 317 900 (35) 9 083 3 
2 134 550  (15)  45 850 (5) 180 400 (20) 9 020 4 
3   91 000 (10) 111 600 (12) 202 600 (22) 9 209 1 
4   44 950 (5) 192 990 (21) 237 940 (26) 9 152 2 
Sum 359 900 (40) 578 940 (63) 938 840 (103)   
 

We can write a model as: 

 ijk i j ijky h s eμ= + + +  
 
We assume that the herd is a fixed effect, and that rams are unrelated so: 
s∼ 2( , )sσND 0 I  and e∼ 2( , )eσND 0 I , where 2 20.25s Aσ σ=  and 

2 20.75e A
2
Eσ σ σ= + . With an assumed h2 of 0.25, 

2

2

4 15h
h

λ −
= = .  

 

After reparameterization where the total mean effect μ is set to zero we get MME: 

 

1

2

1

2

3

4

40 0 10 15 10 5 359900
0 63 25 5 12 21 578940

10 25 35 15 0 0 0 317900
15 5 0 20 15 0 0 180400
10 12 0 0 22 15 0 202600
5 21 0 0 0 26 15 237940

h
h
s
s
s
s

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥+

=⎢ ⎥⎢ ⎥+ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥+
⎢ ⎥⎢ ⎥

+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

The solutions from multiplying the right hand side by the inverse of the coeffi-
cient matrix become: 
  

 

1

2

1

2

3

4

ˆ 8998.97
ˆ 9196.64

40.11ˆ
16.22ˆ

60.83ˆ
4.49ˆ

h

h
s
s
s
s

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ = ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
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Again, note that the sum of the four sire effects is zero. To get breeding values, 
the sire effects are doubled. Note that there is a reranking compared with the rank-
ing based on progeny averages – sire 1 is now ranked as number 4 and has 
changed places with sire 2. The reason for this is most likely that sire 1 had an 
unfair advantage when looking at the progeny averages, because he had many 
more daughters in the good herd (number 2), whereas the opposite was true for 
sire 2. (Now, of course before estimating the herd effects, we did not really know 
which herd was the best.) When we adjust for that fact (by applying the model 
including a herd effect), we get a better description of the true breeding value. 
 
 

Sire-maternal grandsire model 
The sire model only accounts for the inheritance from the father, not from the 
mother. The implicit assumption is that all offspring of a sire are from different 
dams and that each sire is mated to a random sample of dams. For progeny testing 
of dairy bulls this is commonly a reasonable assumption. However, by including 
also the maternal grandsire in the model, one can, at least partly, take the inheri-
tance from the maternal side into account. This model (with a herd effect in-
cluded) could be written as: 
 

 
1
2ijkl i j k ijkly h s sμ= + + + + e  [61] 

 
Note, that there is only one vector of sire effects, i.e. the effect of a certain sire is 
the same whether it is the father of the offspring or the maternal grandsire (but in 
the latter case it is halved because it is removed one generation). This type of 
(additive genetic) sire-maternal grandsire model should not be confused with a 
sire-maternal grandsire model when one assumes that there are maternal effects. 
Then there will be one vector of sire effects and one vector of maternal grandsire 
effects and they will have different genetic interpretation.  
 

In [61] the residual variance has expectation 2 21 1(1 )
4 16e A

2
Eσ σ σ= − − +   

(instead of 2 21(1 )
4e A

2
Eσ σ σ= − + in the sire model).  
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